scholarly journals Potential use of nir and visible spectroscopy to analyze chemical properties of thermally treated wood

Author(s):  
Elaine Cristina Lengowski ◽  
Graciela Inês Bolzon de Muñiz ◽  
Umberto Klock ◽  
Silvana Nisgoski
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


2021 ◽  
Author(s):  
◽  
Errj Sansonetti

Wood has great potential for uses in outdoor conditions, but it can be easily degraded due to the action of environmental factors (solar radiation, moisture, fungi, insects, etc.). The protection of wood is therefore a very actual research topic, and it is also the object of this work. The main goal of this Doctoral Thesis is to obtain a water-based alkyd paint formulation in the form of emulsion and to optimize its composition with necessary additives, in particular, with nanosized red iron oxide pigments which can protect the decorative qualities of thermally treated wood (TTW) during outdoor exposure. In the literature review, the main factors responsible for the degradation of wood and their effect on the structure and properties of wood are summarized. The chemistry of coatings for the protection of wood and the challenges that are faced in reformulation of paints, due to more stringent regulations which limit the use of organic solvents and promote greener alternatives, like water-based paint formulations, are considered. In Europe, this is stated by the Directive 2004/42/EC of the European Parliament on the limitation of emissions of volatile organic compounds (VOC) from decorative paints and varnishes. In the first part of the experimental section, the optimal composition of the alkyd emulsion and the effects of additives on the film properties have been investigated. The different chemo-physical properties of thermally treated wood compared with those of untreated wood have been also evaluated. After thermal modification, wood becomes more hydrophobic and this has been confirmed from the changes of the surface energy of thermally treated wood: the polar component of the surface energy decreases with increasing temperature of thermal modification. In the second part of the experimental section, artificial and outdoor weathering tests have been done to determine the suitable concentration of red iron oxide nanoparticles which can give better protection against photodegradation. Results show that red iron oxide pigments at a concentration of 8 % in alkyd emulsion are efficient to protect the wood surface against discoloration. During the outdoor weathering test, the performance of alkyd emulsion has been compared with that of the solvent-based formulation. Results confirm that the water-based alkyd emulsion gives better protection of the thermally treated wood surface than the solvent-based formulation, thus confirming that the replacement of organic solvent with water gives a product with equivalent or better properties for the protection of thermally treated wood in outdoor conditions.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2791
Author(s):  
Suyeong Lee ◽  
Jun Lee ◽  
Jaekook Kim ◽  
Marco Agostini ◽  
Shizhao Xiong ◽  
...  

The use of chalcogenide elements, such as sulfur (S) and selenium (Se), as cathode materials in rechargeable lithium (Li) and sodium (Na) batteries has been extensively investigated. Similar to Li and Na systems, rechargeable potassium–sulfur (K–S) and potassium–selenium (K–Se) batteries have recently attracted substantial interest because of the abundance of K and low associated costs. However, K–S and K–Se battery technologies are in their infancy because K possesses overactive chemical properties compared to Li and Na and the electrochemical mechanisms of such batteries are not fully understood. This paper summarizes current research trends and challenges with regard to K–S and K–Se batteries and reviews the associated fundamental science, key technological developments, and scientific challenges to evaluate the potential use of these batteries and finally determine effective pathways for their practical development.


Holzforschung ◽  
2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Lennart Salmén ◽  
Hans Possler ◽  
Jasna S. Stevanic ◽  
Stefanie E. Stanzl-Tschegg

2017 ◽  
Vol 9 (3) ◽  
pp. 12
Author(s):  
Razak Wahab ◽  
Ros Syazmini M. Ghani ◽  
Hashim W. Samsi ◽  
Mohd Sukhairi M. Rasat

This study was carried to investigate changes in the oil heat treated 18-years old of planted Acacia mangium. Harvested trees segregated into bottom, middle and top portions containing heartwood and sapwood were oil heat treated in stainless tank with palm crude oil as heating medium at temperatures of 180oC, 200oC and 220oC for 30, 60 and 90 minutes respectively. The evaluation of the changes in the wood were performed by standards using a Minolta Chroma Meter, TAPPI Standard T204 om-88, TAPPI Standard T203 cm-99, TAPPI Standard T222 cm-02, and BS EN 310:1993 static bending tests. The relationship between the changes in the colour, mechanical and chemical composition, were made using correlation analysis. The result showed oil-heat treatment reduced the lightness of the wood and darkened the both parts of the wood. The strength of the wood reduced slightly after the oil-heat treatment. In the chemical compositions, the percentages of the holocellulose, α-cellulose, hemicellulose and extractive contents decrease with the increase in treatment duration and temperature. The oil heat treatment process at 200°C for duration 60 minutes is recommended for acacia mangium wood as it improved the colour of Acacia mangium and standardized the colour of sapwood and heartwood. The loss in strength at this temperature and duration is acceptable as the treated wood only loss up to 15% strength in MOR and 10.7% in MOE.


Holzforschung ◽  
2008 ◽  
Vol 62 (3) ◽  
Author(s):  
Bruno Esteves ◽  
José Graça ◽  
Helena Pereira

Abstract Eucalypt wood (Eucalyptus globulus) was heated in an oven for 2–24 h at 170–200°C and in an autoclave with superheated and saturated steam for 2–12 h at 190–210°C. The chemical composition of untreated wood and thermally treated wood with different mass losses in the range of 1.1–11.9% was studied by summative analysis, and the composition of dichloromethane, ethanol and water extracts was determined by gas chromatography mass spectometry (GC-MS). The hemicelluloses degraded first, mainly regarding the arabinose and xylose moieties. Lignin degraded at a slower rate and cellulose was only slightly affected under severe treatment conditions. The extractive content increased first with heat treatment and decreased later on. Almost all of the original extractives disappeared and new compounds were formed, such as anhydrosugars, mannosan, galactosan, levoglucosan and two C5 anhydrosugars. The most prominent lignin derived compounds were syringaldehyde, syringic acid and sinapaldehyde. The main difference between autoclave and oven treated samples was the appearance of more oxidized extractives for the oven treatment.


1994 ◽  
Vol 24 (10) ◽  
pp. 2078-2084 ◽  
Author(s):  
Kwei-Nam Law ◽  
Jacques L. Valade

Although jack pine (Pinusbanksiana Lamb.), which represents 20% of the total softwood volume, is one of the most abundant commercial softwood species in Canada, its rate of utilization in pulping is surprisingly low. This paper reviews the literature concerning the physical and chemical properties as well as the pulping characteristics of this species by mechanical, thermomechanical, chemithermomechanical, chemimechanical, and chemical processes to better understand its potential use in papermaking. The objective is to identify the problems related to the use of jack pine so that solutions might be sought to promote its usage. Some recommendations are put forth concerning future research.


2020 ◽  
Vol 1 (1) ◽  
pp. 18
Author(s):  
Safinta Nurindra Rahmadhia ◽  
Titisari Juwitningtyas

Banana leaf is mostly used as food packaging materials. The most often used leaf of banana trees is from Klutuk banana. Its leaf is the broadest and most durable among other banana leaf cultivars. However, the research of potential use of Klutuk banana leaf has not much done. In this research, the physical and chemical properties of Klutuk banana leaves will be observed from the very top to the bottom of the tree. Physical properties explored from Klutuk banana leaves are tensile strength, elongation, thickness, and color of the leaf. The leaf then will be extracted using methanol so that its antioxidant properties can be known. The leaf from the third petiole of Klutuk banana susu and wulung cultivars, has the best physical properties, i.e., mechanical, color, and antioxidant activity properties, and is best to use as food packaging material. The most significant activity of antioxidant is found from the first shoot of Klutuk banana susu and wulung leaf cultivars.


Sign in / Sign up

Export Citation Format

Share Document