scholarly journals Isoleucine Enhances Plant Resistance Against Botrytis cinerea via Jasmonate Signaling Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuwen Li ◽  
Suhua Li ◽  
Ran Du ◽  
Jiaojiao Wang ◽  
Haiou Li ◽  
...  

Amino acids are the building blocks of biomacromolecules in organisms, among which isoleucine (Ile) is the precursor of JA-Ile, an active molecule of phytohormone jasmonate (JA). JA is essential for diverse plant defense responses against biotic and abiotic stresses. Botrytis cinerea is a necrotrophic nutritional fungal pathogen that causes the second most severe plant fungal disease worldwide and infects more than 200 kinds of monocot and dicot plant species. In this study, we demonstrated that Ile application enhances plant resistance against B. cinerea in Arabidopsis, which is dependent on the JA receptor COI1 and the jasmonic acid-amido synthetase JAR1. The mutant lib with higher Ile content in leaves exhibits enhanced resistance to B. cinerea infection. Furthermore, we found that the exogenous Ile application moderately enhanced plant resistance to B. cinerea in various horticultural plant species, including lettuce, rose, and strawberry, suggesting a practical and effective strategy to control B. cinerea disease in agriculture. These results together showed that the increase of Ile could positively regulate the resistance of various plants to B. cinerea by enhancing JA signaling, which would offer potential applications for crop protection.

2017 ◽  
Vol 59 (11) ◽  
pp. 797-804 ◽  
Author(s):  
Shaofeng Qu ◽  
Xi Zhang ◽  
Yutong Song ◽  
Jinxing Lin ◽  
Xiaoyi Shan

2021 ◽  
Vol 12 ◽  
Author(s):  
Beibei Li ◽  
Ruolin Wang ◽  
Shiya Wang ◽  
Jiang Zhang ◽  
Ling Chang

Cytokinins (CKs) can modulate plant immunity to various pathogens, but how CKs are involved in plant defense responses to the necrotrophic pathogen Botrytis cinerea is still unknown. Here, we found that B. cinerea infection induced transcriptional changes in multiple genes involved in the biosynthesis, degradation, and signaling of CKs, as well as their contents, in pathogen-infected Arabidopsis leaves. Among the CKs, the gene expression of CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5) was remarkably induced in the local infected leaves and the distant leaves of the same plant without pathogen inoculation. Cis-zeatin (cZ) and its riboside (cZR) accumulated considerably in infected leaves, suggesting an important role of the cis-zeatin type of CKs in the plant response to B. cinerea. Cytokinin double-receptor mutants were more susceptible to B. cinerea infection, whereas an exogenous CK treatment enhanced the expression levels of defense-related genes and of jasmonic acid (JA) and ethylene (ET), but not salicylic acid (SA), resulting in higher resistance of Arabidopsis to B. cinerea. Investigation of CK responses to B. cinerea infection in the JA biosynthesis mutant, jar1-1, and ET-insensitive mutant, ein2-1, showed that CK signaling and levels of CKs, namely, those of isopentenyladenine (iP), isopentenyladenine riboside (iPR), and trans-zeatin (tZ), were enhanced in jar1-1-infected leaves. By contrast, reductions in iP, iPR, tZ, and tZ riboside (tZR) as well as cZR contents occurred in ein2-1-infected leaves, whose transcript levels of CK signaling genes were likewise differentially regulated. The Arabidopsis Response Regulator 5 (ARR5) gene was upregulated in infected leaves of ein2-1 whereas another type-A response regulator, ARR16, was significantly downregulated, suggesting the existence of a complex regulation of CK signaling via the ET pathway. Accumulation of the cis-zeatin type of CKs in B. cinerea-infected leaves depended on ET but not JA pathways. Collectively, our findings provide evidence that CK responds to B. cinerea infection in a variety of ways that are differently modulated by JA and ET pathways in Arabidopsis.


2009 ◽  
Vol 22 (2) ◽  
pp. 176-189 ◽  
Author(s):  
Huanbin Zhou ◽  
Robyn L. Morgan ◽  
David S. Guttman ◽  
Wenbo Ma

The bacterial plant pathogen Pseudomonas syringae depends on the type III secretion system and type III-secreted effectors to cause disease in plants. HopZ is a diverse family of type III effectors widely distributed in P. syringae isolates. Among the HopZ homologs, HopZ1 is ancient to P. syringae and has been shown to be under strong positive selection driven by plant resistance-imposed selective pressure. Here, we characterized the virulence and avirulence functions of the three HopZ1 alleles in soybean and Nicotiana benthamiana. In soybean, HopZ1 alleles have distinct functions: HopZ1a triggers defense response, HopZ1b promotes bacterial growth, and HopZ1c has no observable effect. In N. benthamiana, HopZ1a and HopZ1b both induce plant defense responses. However, they appear to trigger different resistance pathways, evidenced by two major differences between HopZ1a- and HopZ1b-triggered hypersensitive response (HR): i) the putative N-acylation sites had no effect on HopZ1a-triggered cell death, whereas it greatly enhanced HopZ1b-triggered cell death; and ii) the HopZ1b-triggered HR, but not the HopZ1a-triggered HR, was suppressed by another HopZ homolog, HopZ3. We previously demonstrated that HopZ1a most resembled the ancestral allelic form of HopZ1; therefore, this new evidence suggested that differentiated resistance systems have evolved in plant hosts to adapt to HopZ1 diversification in P. syringae.


2020 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Donata Molisso ◽  
Mariangela Coppola ◽  
Anna Maria Aprile ◽  
Concetta Avitabile ◽  
Roberto Natale ◽  
...  

Plant defense peptides are able to control immune barriers and represent a potential novel resource for crop protection. One of the best-characterized plant peptides is tomato Systemin (Sys) an octadecapeptide synthesized as part of a larger precursor protein. Upon pest attack, Sys interacts with a leucine-rich repeat receptor kinase, systemin receptor SYR, activating a complex intracellular signaling pathway that leads to the wound response. Here, we demonstrated, for the first time, that the direct delivery of the peptide to Solanum melongena and Vitis vinifera plants protects from the agent of Grey mould (Botrytis cinerea). The observed disease tolerance is associated with the increase of total soluble phenolic content, the activation of antioxidant enzymes, and the up-regulation of defense-related genes in plants treated with the peptide. Our results suggest that in treated plants, the biotic defense system is triggered by the Sys signaling pathway as a consequence of Sys interaction with a SYR-like receptor recently found in several plant species, including those under investigation. We propose that this biotechnological use of Sys, promoting defense responses against invaders, represents a useful tool to integrate into pest management programs for the development of novel strategies of crop protection.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 59
Author(s):  
Pushp Sheel Shukla ◽  
Tudor Borza ◽  
Alan T. Critchley ◽  
Balakrishnan Prithiviraj

Sustainable agricultural practices increasingly demand novel, environmentally friendly compounds which induce plant immunity against pathogens. Stimulating plant immunity using seaweed extracts is a highly viable strategy, as these formulations contain many bio-elicitors (phyco-elicitors) which can significantly boost natural plant immunity. Certain bioactive elicitors present in a multitude of extracts of seaweeds (both commercially available and bench-scale laboratory formulations) activate pathogen-associated molecular patterns (PAMPs) due to their structural similarity (i.e., analogous structure) with pathogen-derived molecules. This is achieved via the priming and/or elicitation of the defense responses of the induced systemic resistance (ISR) and systemic acquired resistance (SAR) pathways. Knowledge accumulated over the past few decades is reviewed here, aiming to explain why certain seaweed-derived bioactives have such tremendous potential to elicit plant defense responses with considerable economic significance, particularly with increasing biotic stress impacts due to climate change and the concomitant move to sustainable agriculture and away from synthetic chemistry and environmental damage. Various extracts of seaweeds display remarkably different modes of action(s) which can manipulate the plant defense responses when applied. This review focuses on both the similarities and differences amongst the modes of actions of several different seaweed extracts, as well as their individual components. Novel biotechnological approaches for the development of new commercial products for crop protection, in a sustainable manner, are also suggested.


2021 ◽  
Author(s):  
Omer Barda ◽  
Maggie Levy

IQ Domain 1 (IQD1) is a novel calmodulin-binding protein in A. thaliana, which was found to be a positive regulator of glucosinolate (GS) accumulation and plant defense responses against insects. We demonstrate here that the IQD1 overexpressing line (IQD1OXP) is more resistant also to the necrotrophic fungus Botrytis cinerea, whereas an IQD1 knockout line (iqd1-1) is much more sensitive. Furthermore, we show that IQD1 is upregulated by Jasmonic acid (JA) and downregulated by Salicylic acid (SA). Comparison of whole transcriptome expression between iqd1-1 and wild type revealed a substantial downregulation of genes involved in plant defense and hormone regulation. Further examination revealed a marked reduction of SA/JA signaling and increase in ethylene signaling genes in the iqd1-1 line. Moreover, quantification of SA, JA and abscisic acids in IQD1OXP and iqd1-1 lines compared to WT showed a significant reduction in endogenous JA levels in the knockout line simultaneously with increased SA levels. Epistasis relations between IQD1OXP and mutants defective in plant-hormone signaling indicated that IQD1 acts upstream or parallel to the hormonal pathways (JA/ET and SA) in defense response against B. cinerea and in regulating GS accumulation and it is dependent on JAR1 controlling indole glucosinolate accumulation. As a whole, our results suggest that IQD1 is an important defensive protein against Botrytis cinerea in A. thaliana and is integrated into several important pathways such as plant microbe perception and hormone signaling.


2019 ◽  
Vol 60 (12) ◽  
pp. 2638-2647 ◽  
Author(s):  
Xueying Chen ◽  
Dan-Dan Wang ◽  
Xin Fang ◽  
Xiao-Ya Chen ◽  
Ying-Bo Mao

Abstract As sessile and autotrophic organisms, plants have evolved sophisticated pathways to produce a rich array of specialized metabolites, many of which are biologically active and function as defense substances in protecting plants from herbivores and pathogens. Upon stimuli, these structurally diverse small molecules may be synthesized or constitutively accumulated. Jasmonate acids (JAs) are the major defense phytohormone involved in transducing external signals (such as wounding) to activate defense reactions, including, in particular, the reprogramming of metabolic pathways that initiate and enhance the production of defense compounds against insect herbivores and pathogens. In this review, we summarize the progress of recent research on the control of specialized metabolic pathways in plants by JA signaling, with an emphasis on the molecular regulation of terpene and alkaloid biosynthesis. We also discuss the interplay between JA signaling and various signaling pathways during plant defense responses. These studies provide valuable data for breeding insect-proof crops and pave the way to engineering the production of valuable metabolites in future.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3108 ◽  
Author(s):  
Mathilde Robineau ◽  
Sarah Le Guenic ◽  
Lisa Sanchez ◽  
Ludovic Chaveriat ◽  
Vincent Lequart ◽  
...  

Natural rhamnolipids are potential biocontrol agents for plant protection against bacterial and fungal diseases. In this work, we synthetized new synthetic mono-rhamnolipids (smRLs) consisting in a rhamnose connected to a simple acyl chain and differing by the nature of the link and the length of the lipid tail. We then investigated the effects of these ether, ester, carbamate or succinate smRL derivatives on Botrytis cinerea development, symptoms spreading on tomato leaves and immune responses in tomato plants. Our results demonstrate that synthetic smRLs are able to trigger early and late immunity-related plant defense responses in tomato and increase plant resistance against B. cinerea in controlled conditions. Structure-function analysis showed that chain length of the lipidic part and type of acyl chain were critical to smRLs immune activity and to the extent of symptoms caused by the fungus on tomato leaves.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1822
Author(s):  
Jorge Poveda ◽  
Marcia Barquero ◽  
Fernando González-Andrés

Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathogen worldwide, to our knowledge. Beneficial bacteria and fungi are efficient biocontrol agents against B. cinerea through direct mechanisms, such as parasitism, antibiosis, and competition, but also indirectly through the activation of systemic plant resistance. The interaction between plants and these microorganisms can lead to the development of defensive responses in distant plant organs, which are highly effective against foliar, flower, and fruit pathogens, such as B. cinerea. This review aimed to explore the systemic plant defense responses against B. cinerea by compiling all cases reported (to the best of our knowledge) on the use of beneficial bacteria and fungi for agriculture, a subject not yet specifically addressed.


Sign in / Sign up

Export Citation Format

Share Document