scholarly journals Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application

2021 ◽  
Vol 12 ◽  
Author(s):  
Shujun Wang ◽  
Junlin Zheng ◽  
Yujia Wang ◽  
Qingfeng Yang ◽  
Taotao Chen ◽  
...  

The effect of biochar application on photosynthetic traits and yield in peanut (Arachis hypogaea L.) is not well understood. A 2-year field experiment was conducted in Northwest Liaoning, China to evaluate the effect of biochar application [0, 10, 20, and 40 t ha−1 (B0, B10, B20, and B40)] on leaf gas exchange parameters, chlorophyll fluorescence parameters, and yield of peanut. B10 improved photochemical quenching at flowering and pod set and reduced non-photochemical quenching at pod set, relative to B0. B10 and B20 increased actual photochemical efficiency and decreased regulated energy dissipated at pod set, relative to B0. B10 significantly increased net photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency at flowering and pod set, relative to B0. Compared with B0, B10 significantly improved peanut yield (14.6 and 13.7%) and kernel yield (20.2 and 14.4%). Biochar application increased leaf nitrogen content. B10 and B20 significantly increased plant nitrogen accumulation, as compared to B0. The net photosynthetic rate of peanut leaves had a linear correlation with plant nitrogen accumulation and peanut yield. The application of 10 t ha−1 biochar produced the highest peanut yield by enhancing leaf photosynthetic capacity, and is thus a promising strategy for peanut production in Northwest Liaoning, China.

2021 ◽  
Vol 25 (04) ◽  
pp. 863-872
Author(s):  
Yong Li

Photosynthetic characteristics and expression patterns of the photosynthesis-related genes in the high-yield mulberry variety E’Sang 1 (E1) and normal mulberry variety Husang 32 (H32) were investigated in this study. The observation of daily variation of photosynthesis in E1 and H32 indicated that the peak of net photosynthetic rate(Pn)inE1 variety was significantly higher than that inH32 (P <0.05). Meanwhile, the Pn-PAR and Pn-Ci responses of E1 and H32 were evaluated, and the results showed that the carboxylation efficiency and compensation saturation point were much higher in E1 rather thanH32. Importantly, the photosystem II actual photochemical efficiency and photochemical quenching coefficient in the leaves of E1 were significantly higher than those in H32 (P<0.05). Also, the activity of RuBP in E1 was higher than that in H32 (P >0.05). Based on the RNA-seq data, a total of 3,356 differentially expressed genes (DEGs) were detected among different time points between E1 and H32. Of these, 1,136 DEGs were involved in the metabolic pathways, including three main photosynthesis-related metabolic pathways (i.e., carbon fixation in photosynthetic organisms, carbon metabolism, and porphyrin and chlorophyll metabolism). Meanwhile, 10 novel DEGs related to photosynthesis were detected, and four potential key genes of them could account for the differences in net photosynthetic rate and yield betweenH32 and E1.This study could provide important insights into the molecular breeding of mulberry varieties with high photosynthetic efficiency and contribute to understanding the genetic mechanism of photosynthesis.© 2021 Friends Science Publishers


2011 ◽  
Vol 356-360 ◽  
pp. 2785-2790 ◽  
Author(s):  
Liu Qing Yang ◽  
Fei Yong Liao ◽  
Kun Zhao

Solidago canadensis L. was treated with metsulfuron-methyl, fluroxypyr and iso-propyl glyphosate. The photosynthetic rate and chlorophyll fluorescence parameters were measured. The results showed that after treated 13 days later, the intrinsic conversion efficiency of light energy decreased, treatment A1B3 had the largest decline, which was 81.6 % of the control, the changes of treatments treated with iso-propyl glyphosate were not obvious; the photochemical quenching parameter of all treatments decreased, treatment A2B2 had the largest decline, which was 42.6 % of control; the photosynthetic electron transport rate decreased obviously, treatment A1B2,A1B3 and A2B2 had the largest decline, which was 20.0 % of control; the net photosynthetic rate decreased greatly, treatment A2B2 and A2B3 drooped more than others, which were 11.3% and 17.8% of control respectively. After treated 50 days later, the plants treated with metsulfuron-methyl and fluroxypyr were dead, whose net photosynthetic rates were zero. The net photosynthetic rates of the plants treated with iso-propyl glyphosate decreased to varying degrees, but plants were alive. Result shows that metsulfuron-methyl and fluroxypyr could be used to kill the Solidago canadensis L., the plants would be dead after treated 50 days later.


2013 ◽  
Vol 40 (No. 1) ◽  
pp. 40-43 ◽  
Author(s):  
Z.Q. Yang ◽  
Y.X Li ◽  
J.B. Zhang ◽  
J. Zhang ◽  
J. Zhu ◽  
...  

For the use of LED as a light source to regulate the photosynthesis of chrysanthemum leaves under greenhouse conditions, the effects of different red (660 &plusmn; 30 nm) to far-red (730 &plusmn; 30 nm) radiation ratios (R:FR) on the photosynthetic characteristics and chlorophyll fluorescence parameters of chrysanthemum leaves were studied. Red and far-red LED light sources were combined in different proportions to produce four R:FR ratio treatments: 0.5, 2.5, 4.5 and 6.5. The chlorophyll a content, SPAD value, net photosynthetic rate, light-saturated maximum photosynthetic rate, CO<sub>2</sub>-saturated carboxylation rate, apparent quantum efficiency and carboxylation efficiency were all the highest under the R:FR ratio of 2.5, followed by the R:FR ratio of 4.5. Potential photochemical efficiency of photosystem II, photochemical quenching and electron transport rate for the R:FR ratios of 2.5 and 4.5 were markedly higher than those for 0.5 and 6.5, however, those parameters did not differ significantly between the R:FR ratios of 2.5 and 4.5.


2012 ◽  
Vol 450-451 ◽  
pp. 537-542
Author(s):  
En Xiang Kang ◽  
Jun Jie Luo ◽  
Hui Zhen Qiu ◽  
Nian Lai Chen ◽  
Dan Su ◽  
...  

Pumpkin(Cucubita pepo L.)seedlings were exposed under different low temperature-light regimes to investigate the responses of photosynthesis and chlorophyll fluorescence to the stress. The results indicated that the contents of chlorophyll increased at first day after treatment and then decreased under special temperature(15/5、20/10、25/15°C )and poor light(50、150、250μmol•m-2•s-1).The net photosynthetic rate, evaporation rate, stomata conductance and intercellular CO2 concentration increased one day after treatment and then decreased, stomata limitation increased above15/5°C special temperature and special poor light. However, under 15/5°C temperature and special poor light, the net photosynthetic rate, evaporation rate and stomata conductance decreased, and intercellular CO2 concentration increased stomata limitation increased in 4 days after treatment then decreased. Ft、Yield(F/Fm’)、qP decreased under special temperature and poor light.The change of these parameters were less under the light density of 50μmol•m-2•s-2 than other light densities, which means that poorer light reduced the sensitivity of pumpkin to low temperature and increased the photochemical activity of PS, but the photochemical quenching (qP) decreased and the non-photochemical quenching(qN) increased at the same time.


2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Yaoguo QIN ◽  
Zesheng YAN ◽  
Honghui GU ◽  
Zhengxiang WANG ◽  
Xiong JIANG ◽  
...  

To study the effects of shading level on the photosynthesis and corm weight of konjac plant, the chlorophyll fluorescence parameters, daily variation of relative electron transport rate (rETR), net photosynthetic rate (Pn), and corm weight of konjac plants under different treatments were measured and comparatively analyzed through covered cultivation of biennial seed corms with shade nets at different shading rates (0%, 50%, 70%, and 90%). The results showed that with the increase in shading rate, the maximum photochemical efficiency, potential activity, and non-photochemical quenching of photosystem Ⅱ (PSⅡ) of konjac leaves constantly increased, whereas the actual photosynthetic efficiency, rETR, and photochemical quenching of PSⅡ initially increased and then decreased. This result indicated that moderate shading could enhance the photosynthetic efficiency of konjac leaves. The daily variation of rETR in konjac plants under unshaded treatment showed a bimodal curve, whereas that under shaded treatment displayed a unimodal curve. The rETR of plants with 50% treatment and 70% treatment was gradually higher than that under unshaded treatment around noon. The moderate shading could increase the Pn of konjac leaves. The stomatal conductance and transpiration rate of the leaves under shaded treatment were significantly higher than those of the leaves under unshaded treatment. Shading could promote the growth of plants and increase corm weight. The comprehensive comparison shows that the konjac plants had strong photosynthetic capacity and high yield when the shading rate was 50%-70% for the area.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2015 ◽  
Vol 105 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Sandro Dan Tatagiba ◽  
Fábio Murilo DaMatta ◽  
Fabrício Ávila Rodrigues

This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.


Author(s):  
Hamid Mohammadi ◽  
Mohsen Janmohammadi ◽  
Naser Sabaghnia

<p>Drought stress negatively affects plant photosynthesis and disturbs the electron transport activity. Evaluation of the chlorophyll fluorescence parameters might reflect influence of the environmental stress on plants and can be applied as an indicator of the primary photochemistry of photosynthesis. In current study the effect of foliar application of benzylaminopurine (BAP, a synthetic cytokinin) and abscisic acid (ABA) on chlorophyll fluorescence parameters of relatively drought tolerant (Pishtaz) and susceptible (Karaj3) bread wheat genotypes under well watered and terminal water deficit condition have been evaluated. Terminal drought was induced by withholding water at anthesis stage (Zadoks scale 65). Results showed that coefficient of non-photochemical quenching of variable fluorescence (qN), quantum yield of PS II photochemistry (ΦPSII) and photochemical quenching (qP) were affected by hormone spray treatments. So that evaluation of parameters at 7 day after foliar treatments revealed that ABA significantly increased electron transport rate (ETR) and qN while considerably decreased ΦPSII, gs and maximum quantum yield of photosystem II (Fv/Fm). However exogenous application of cytokinin could increase gs, Fv/Fm and ΦPSII and the highest value of these parameters was recorded in <em>cytokinin </em>treated plants of Pishtaze cv. under well watered condition. Nevertheless, evaluation of the parameters in different periods after spraying showed that with approaching the maturity stage some traits like as gs, Fv/Fm and ETR significantly decreased in both genotypes. Evaluation of gs and Chlorophyll fluorescence parameters of genotypes between different irrigation levels showed that although cv. Pishtaz showed higher performance of PSII under well watered condition, it failed to maintain its superiority under stress condition. This finding suggests that some more responsive parameter like gs, Fv/Fm and ΦPSII can be considered as reliable indicator for understanding the biochemical and physiological effects of exogenous application of phytohormones under terminal drought stress.</p>


2021 ◽  
Vol 49 (3) ◽  
pp. 12421
Author(s):  
Ruonan GENG ◽  
Xinye ZHANG ◽  
Xiaoping FAN ◽  
Qian HU ◽  
Tianhong NI ◽  
...  

To provide references for poplar cultivation in waterlogged prone area of Jianghan Plain of China, the waterlogging tolerance of 15 poplar clones widely cultivated in these areas were evaluated based on their responses to 45-day waterlogging stress followed by 15-day drainage recovery in morphology, growth, biomass accumulation, leaf gas exchange and chlorophyll fluorescence parameters. The results showed that the normal watered seedlings (CK) of the 15 clones grew vigorously during the experiment, and no defoliation and death occurred. For the seedlings under waterlogging treatment (water 10 cm above the soil surface), its morphology changed markedly, including slowing growth, chlorosis and abscission of leaves, development of hypertrophied lenticels and adventitious roots etc. Waterlogging stress significantly inhibited the seedling growth of height and ground diameter, biomass accumulation, as well as leaf gas exchange and chlorophyll fluorescence parameters of the 15 clones with varying degrees. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration/ environmental CO2 concentration (Ci/Ca), variable fluorescence (Fv), variable fluorescence/ initial fluorescence (Fv/Fo) and PS Ⅱ primary light energy conversion efficiency (Fv/Fm) decreased gradually with the prolonged waterlogging, and reached their bottom on day 45. During the terminal recovery stage, the leaf gas exchange and chlorophyll fluorescence parameters of the most clones increased, but their recovery abilities were significantly different. At the end of the experiment, the highest survival rates (100%) were observed in DHY, HS-1, HS-2, I-72, I-69, I-63 and NL-895, and the lowest (zero) occurred in XYY. Survival rates of the other clones ranged from 33.33% to 83.33%. Both results of cluster analysis and membership function analysis showed that HS-1, I-69, DHY, NL-895 and HS-2 had the strongest waterlogging tolerance, XYY and HBY were the worst, and the other clones were moderate. These results would provide guidance not only for the selection of cultivated varieties in Jianghan Plain, but also for the selection of hybrid parents for waterlogging resistance breeding.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 238
Author(s):  
Yu Kyeong Shin ◽  
Shiva Ram Bhandari ◽  
Jung Su Jo ◽  
Jae Woo Song ◽  
Jun Gu Lee

This study monitored changes in chlorophyll fluorescence (CF), growth parameters, soil moisture content, phytochemical content (proline, ascorbic acid, chlorophyll, total phenol content (TPC), and total flavonoid content (TFC)), and antioxidant activities in 12-day-old lettuce (Lactuca sativa L.) seedlings grown under drought stress (no irrigation) and control (well irrigated) treatments in controlled conditions for eight days. Measurements occurred at two-day intervals. Among ten CF parameters studied, effective quantum yield of photochemical energy conversion in PSII (Y(PSII)), coefficient of photochemical quenching (qP), and coefficient of photochemical quenching of variable fluorescence based on the lake model of PSII (qL) significantly decreased in drought-stressed seedlings from day 6 of treatment compared to control. In contrast, maximum quantum yield (Fv/Fm), ratio of fluorescence (Rfd), and quantum yield of non-regulated energy dissipation in PSII (Y(NO)) were significantly affected only at the end. All growth parameters decreased in drought-stressed seedlings compared to control. Proline started increasing from day 4 and showed ~660-fold elevation on day 8 compared to control. Chlorophyll, ascorbic acid, TPC, TFC, and antioxidant activities decreased in drought-stressed seedlings. Results showed major changes in all parameters in seedlings under prolonged drought stress. These findings clarify effects of drought stress in lettuce seedlings during progressive drought exposure and will be useful in the seedling industry.


2018 ◽  
Vol 8 (2) ◽  
pp. 286-298
Author(s):  
Gabriella Nora Maria Giudici ◽  
Josef Hájek ◽  
Miloš Barták ◽  
Svatava Kubešová

Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  


Sign in / Sign up

Export Citation Format

Share Document