scholarly journals Validating the Strategic Deployment of Blackleg Resistance Gene Groups in Commercial Canola Fields on the Canadian Prairies

2021 ◽  
Vol 12 ◽  
Author(s):  
Justine Cornelsen ◽  
Zhongwei Zou ◽  
Shuanglong Huang ◽  
Paula Parks ◽  
Ralph Lange ◽  
...  

Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is a serious threat to canola (Brassica napus L.) production in western Canada. Crop scouting and extended crop rotation, along with the use of effective genetic resistance, have been key management practices available to mitigate the impact of the disease. In recent years, new pathogen races have reduced the effectiveness of some of the resistant cultivars deployed. Strategic deployment and rotation of major resistance (R) genes in cultivars have been used in France and Australia to help increase the longevity of blackleg resistance. Canada also introduced a grouping system in 2017 to identify blackleg R genes in canola cultivars. The main objective of this study was to examine and validate the concept of R gene deployment through monitoring the avirulence (Avr) profile of L. maculans population and disease levels in commercial canola fields within the Canadian prairies. Blackleg disease incidence and severity was collected from 146 cultivars from 53 sites across Manitoba, Saskatchewan, and Alberta in 2018 and 2019, and the results varied significantly between gene groups, which is likely influenced by the pathogen population. Isolates collected from spring and fall stubble residues were examined for the presence of Avr alleles AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm5, AvrLm6, AvrLm7, AvrLm9, AvrLm10, AvrLm11, AvrLepR1, AvrLepR2, AvrLep3, and AvrLmS using a set of differential host genotypes carrying known resistance genes or PCR-based markers. The Simpson’s evenness index was very low, due to two dominant L. maculans races (AvrLm2-4-5-6-7-10-11 and AvrLm2-5-6-7-10-11) representing 49% of the population, but diversity of the population was high from the 35 L. maculans races isolated in Manitoba. AvrLm6 and AvrLm11 were found in all 254 L. maculans isolates collected in Manitoba. Knowledge of the blackleg disease levels in relation to the R genes deployed, along with the L. maculans Avr profile, helps to measure the effectiveness of genetic resistance.

2020 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Aldrin Y. Cantila ◽  
Nur Shuhadah Mohd Saad ◽  
Junrey C. Amas ◽  
David Edwards ◽  
Jacqueline Batley

Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.


2001 ◽  
Vol 41 (1) ◽  
pp. 71 ◽  
Author(s):  
R. K. Khangura ◽  
M. J. Barbetti

Canola crops were monitored throughout the Western Australian wheatbelt during 1996–99 to determine the incidence and severity of crown cankers caused by the blackleg fungus (Leptosphaeria maculans). All crops surveyed had blackleg. The incidence of crown canker was 48–100%, 15–100%, 9–94% and 48–100% during 1996, 1997, 1998 and 1999, respectively. The mean incidence of crown cankers statewide was 85, 63, 55 and 85% in 1996, 1997, 1998 and 1999, respectively. The severity of crown canker (expressed as percentage disease index) ranged between 30 and 96%, 3 and 94%, 5 and 78% and 21 and 96% during 1996, 1997, 1998 and 1999, respectively. These high levels of blackleg can possibly be attributed to the accumulation of large amounts of infested canola residues. In 1999, there were effects of variety, application of the fungicide Impact, distance to last year’s canola residues and rainfall on the incidence and severity of blackleg. However, there were no effects of sowing date or region on the disease incidence or severity once the other factor effects listed above had been considered. In 1995, an additional survey of 19 sites in the central wheatbelt of Western Australia assessed the survival of the blackleg fungus on residues from crops grown in 1992–94. The residues at all sites carried blackleg. However, the extent of infection at any particular site varied from 12 to 100% of stems with the percentage of stems carrying pseudothecia containing ascospores varying between 7 and 96%. The high levels of blackleg disease found in commercial crops are indicative of significant losses in seed yields, making it imperative that management of blackleg be improved if canola is to remain a viable long-term cropping option in Western Australia.


Author(s):  
Ernesto Fernández-Herrera ◽  
Tania E. González-Soto ◽  
Irene Iliana Ramirez Bustos Irene Iliana Ramirez Bustos

Objective: To describe Fusarium oxysporum f. sp. niveum (Fon) as the causal agent of vascular withering in the watermelon crop (Citrullus lanatus (Thunb.) Matsum and Nakai). Design/Methodology/Approach: A review of scientific literature (scientific books, notes and articles) was carried out about Fon as the causal agent of vascular withering in the watermelon crop; biology, symptoms, disease cycle, isolation and management alternatives. Results: Withering from Fusarium in watermelon is the main fungal disease of this crop worldwide. Necrosis of the vascular tissue and withering of the plant are the most characteristic symptoms of the disease. There are four races of this fungus (Fon race 0, 1, 2 and 3); the commercial varieties of watermelons have different degrees of resistance to these races. Practices such as the correct diagnosis, use of grafts, solarization, fungicides, biological products and genetic resistance can significantly reduce the impact of the disease on the production. Findings/Conclusions: In Mexico, knowledge about vascular withering of watermelon is scarce despite this disease being one of the factors that limits commercial production. The greatest knowledge about the symptoms, the fungus’s biology, presence and distribution of races, diagnosis and alternatives of Fon management, will allow integrating appropriate management practices that favor the commercial production of the crop.


2019 ◽  
Vol 20 (3) ◽  
pp. 160-164
Author(s):  
Sudha GC Upadhaya ◽  
Venkataramana Chapara ◽  
Mukhlesur Rahman ◽  
Luis E. del Río Mendoza

The efficacy of five fungicide seed treatments as a management tool against blackleg on spring canola was evaluated under greenhouse and field conditions in North Dakota. Blackleg, caused by Leptosphaeria maculans, inflicts the greatest yield losses when infecting seedlings before they reach the six-leaf growth stage. In greenhouse studies, 10-day-old seedlings were inoculated with L. maculans spore suspensions and evaluated 12 days later and at maturity or inoculated 12, 20, or 28 days after planting and evaluated at maturity. In field trials conducted in 2017 and 2018, severity was assessed at maturity. In the greenhouse, all fungicide seed treatments reduced (P = 0.05) disease severity at the seedling stage, but only the protection provided by Obvius (fluxapyroxad + pyraclostrobin + metalaxyl) and Helix Vibrance (mefenoxam + fludioxonil + sedaxane + difenoconazole + thiamethoxam) reduced (P < 0.05) severity at the adult stage; however, none of them provide effective protection when plants were inoculated 20 days after planting or later. In field trials, none of the treatments significantly (P > 0.05) improved plant stand and yield or reduced disease incidence and severity. Although fungicide seed treatment is a valuable tool, it should not be used as the only method to manage blackleg disease.


1989 ◽  
Vol 29 (1) ◽  
pp. 91 ◽  
Author(s):  
BA Summerell ◽  
LW Burgess ◽  
TA Klein

The influence of 3 stubble management practices, stubble retention, stubble incorporation and stubble burning, on the incidence of crown rot of wheat (Triticum aestivum L.) caused by Fusarium graminearum Schwabe Group 1, and on plant development and grain yield was examined. The incidence of disease (percentage plants affected) was assessed in a susceptible (cv. Sunstar) and moderately resistant cultivar (cv. Suneca) in 1986. In 1987 Sunstar was planted into stubble of the 2 cultivars to assess the influence of host resistance on disease carryover. Crown rot was highest in the stubble retention plots (81% incidence in 1986 and 59% in 1987), whereas stubble burning decreased disease incidence in both years, with the reduction being greater in the second year (47% and 16%). Stubble incorporation was ineffective in reducing disease levels (76% and 53% in years 1 and 2). The incidence of crown rot did not differ in the 2 cultivars. At the harvest sampling in 1987 there were no differences in crown rot incidence in plants sown into stubble of the 2 cultivars. Grain yield did not differ significantly between treatments, but early season plant dry weight was reduced in the retained plots. Grain protein levels were reduced (P< 0.05) in the stubble burnt plots.


2011 ◽  
Vol 62 (2) ◽  
pp. 162 ◽  
Author(s):  
K. A. Light ◽  
N. N. Gororo ◽  
P. A. Salisbury

Studies on the blackleg resistance of Brassica lines containing known race-specific, Rlm resistance genes can provide information on the potential use of these genes in the genetic improvement of Australian spring canola lines. Lines of four Brassica species (winter B. napus, B. nigra, B. juncea, B. rapa) containing one or more known specific Rlm genes were assessed for seedling and adult plant survival, on infected stubble derived from crops of both polygenic and B. rapa ssp. sylvestris resistance types, to determine their potential usefulness as sources of blackleg disease resistance in diverse environments in southern Australia. Seedling and adult plant resistance of lines differed depending on the stubble type used. The seedling and adult plant blackleg resistance of several lines containing the resistance genes Rlm1, Rlm1/Rlm3, Rlm7, and Rlm10 was consistently higher than the control line, AV-Sapphire, which carries polygenic resistance. The superior performance of these lines indicates that winter B. napus and B. nigra lines have outstanding potential for improving blackleg disease resistance under Australian conditions.


2008 ◽  
Vol 76 (1) ◽  
pp. 6-14 ◽  
Author(s):  
Fritha M Langford ◽  
Kenneth MD Rutherford ◽  
Mhairi C Jack ◽  
Lorna Sherwood ◽  
Alistair B Lawrence ◽  
...  

There have been increases in the number of organic dairy farms in the UK in recent years. However, there is little information on the impact of organic regulations on cow welfare. As part of a larger study, we aimed to investigate differences between organic and non-organic farms in management practices and winter housing quality. Forty organic and 40 non-organic farms throughout the UK were visited. Organic and non-organic farms were paired for housing type, and as far as possible for herd size, genetic merit and location. A detailed questionnaire covering key aspects of dairy management was carried out with each farmer. On a subset of twenty pairs, an assessment of the quality of the winter housing for both lactating and dry cows was undertaken, covering the parlour, bedding, loafing and feeding areas. Management practices and building conditions varied greatly within farm types and there was considerable overlap between organic and non-organic farms. Milk yield, level and composition of concentrate feed, management of heifers and calving, and use of ‘alternative treatments’ to prevent and treat mastitis differed between organic and non-organic farms. In all other respects there were no differences between farm types. Building dimensions per cow did not differ, even though organic recommendations advise greater space per cow than recommended for non-organic farms. The similarity between organic and non-organic farms in most respects indicates that cow housing and health, based on both the described management regimes and the farmers' perceptions of disease incidence, on organic dairy farms is neither compromised by the regulations, nor considerably better than on non-organic farms.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 97-104 ◽  
Author(s):  
X. W. Guo ◽  
W. G. D. Fernando

Seasonal and diurnal patterns of spore dispersal by Leptosphaeria maculans, which causes blackleg disease of canola, were studied in two consecutive field seasons using a 7-day Burkard spore sampler and rotorod impaction spore samplers. Ascospores of L. maculans were trapped from mid-June to the end of July, whereas pycnidiospores were trapped from mid-July until the end of July or early August. Ascospores and pycnidiospores were trapped between 9:00 P.M. and 4:00 A.M., when air temperatures were 13 to 18°C and relative humidity was >80%. Peak ascospore and pycnidiospore dispersal was associated with rain events. Peak ascospore dispersal was found to occur several hours after rainfall ≥2 mm, and ascospore dispersal continued for approximately 3 days after such events. Peak pycnidiospore dispersal occurred during the same hours as rain events. More ascospores and pycnidiospores were carried in the direction of prevailing winds than in other directions. To the south of the inoculated area, the gradients of disease incidence and stem disease severity were -19.2 and -0.8 m-1, respectively. Disease incidence and stem severity declined by 50% 12.5 and 5.5 m from the inoculated area, respectively. To the north of the inoculated area, the gradients of disease incidence and stem severity were -21.5 and -0.7 m-1, respectively. Disease incidence and stem severity declined by 50% 14.0 and 5.2 m from the inoculated area, respectively. In 2001, ascospores and pycnidiospores were trapped within 25 m of the inoculated area, whereas pycnidiospores were trapped up to 45 m from the inoculated area.


2003 ◽  
Vol 30 (6) ◽  
pp. 711 ◽  
Author(s):  
Paul R. Petrie ◽  
Michael C. T. Trought ◽  
G. Stanley Howell ◽  
Graeme D. Buchan

Canopy topping and leaf removal are management practices commonly used in New Zealand vineyards to increase light and pesticide penetration to the fruit zone, thus, reducing disease incidence. Previous research has suggested that an increase in photosynthesis occurs when leaves are removed, and this may compensate for the reduced leaf area. However, it is difficult to extrapolate single-leaf photosynthesis measurements to a whole-plant scale. Therefore the extent of the compensation is unknown. To evaluate the impact of leaf removal and canopy height on whole-vine photosynthesis, treatments were imposed during the lag phase of berry growth. Leaves were removed from the lower quarter of the canopy, or vines were topped to three quarters of the height of control plants, in a two-by-two-factorial design. Both topping and leaf removal caused a decrease in whole-vine photosynthesis immediately after the treatments were imposed. Leaf removal, but not topping height, reduced photosynthesis on a per unit leaf area basis. This suggests that the lower portion of the canopy contributes more than the upper portion of the canopy to whole-vine photosynthesis. When measurements were made again approximately two months later, tall vines without leaf removal had a higher photosynthesis rate than the other treatments. Fruit yield, sugar content, vine carbohydrate reserves and pruning weights followed trends similar to those observed for photosynthesis, suggesting that although some photosynthetic compensation occurred, the defoliation treatments had a negative effect on vine growth.


2018 ◽  
Vol 69 (1) ◽  
pp. 1 ◽  
Author(s):  
J. McCredden ◽  
R. B. Cowley ◽  
S. J. Marcroft ◽  
A. P. Van de Wouw

Blackleg disease is caused by the stubble-borne pathogen Leptosphaeria maculans and results in significant yield losses in canola (Brassica napus) worldwide. Control of this disease includes breeding for resistance, fungicides and cultural practices including stubble management. In recent years, cropping systems have changed with the introduction of no-till farming and inter-row sowing, and it is unknown what impact these changes have had on stubble retention. The aim of this study is to investigate the impact of inter-row sowing on stubble retention and spore release. The use of inter-row sowing resulted in 25–48% of stubble remaining standing (vertical) in fields after 1 year. Furthermore, spore release was significantly (P < 0.05) delayed in stubble that remained vertical in the field compared with stubble lying down, with total spore release from vertical stubble 66% less than from horizontal stubble. The impact these changes have on the epidemiology of blackleg disease remains unknown.


Sign in / Sign up

Export Citation Format

Share Document