scholarly journals Identification and Characterization of Genes Encoding the Hydroxypyruvate Reductases in Chlamydomonas Reveal Their Distinct Roles in Photorespiration

2021 ◽  
Vol 12 ◽  
Author(s):  
Menglin Shi ◽  
Lei Zhao ◽  
Yong Wang

Photorespiration plays an important role in maintaining normal physiological metabolism in higher plants and other oxygenic organisms, such as algae. The unicellular eukaryotic organism Chlamydomonas is reported to have a photorespiration system different from that in higher plants, and only two out of nine genes encoding photorespiratory enzymes have been experimentally characterized. Hydroxypyruvate reductase (HPR), which is responsible for the conversion of hydroxypyruvate into glycerate, is poorly understood and not yet explored in Chlamydomonas. To identify the candidate genes encoding hydroxypyruvate reductases in Chlamydomonas (CrHPR) and uncover their elusive functions, we performed sequence comparison, enzyme activity measurement, subcellular localization, and analysis of knockout/knockdown strains. Together, we identify five proteins to be good candidates for CrHPRs, all of which are detected with the activity of hydroxypyruvate reductase. CrHPR1, a nicotinamide adenine dinucleotide (NADH)-dependent enzyme in mitochondria, may function as the major component of photorespiration. Its deletion causes severe photorespiratory defects. CrHPR2 takes part in the cytosolic bypass of photorespiration as the compensatory pathway of CrHPR1 for the reduction of hydroxypyruvate. CrHPR4, with NADH as the cofactor, may participate in photorespiration by acting as the chloroplastidial glyoxylate reductase in glycolate-quinone oxidoreductase system. Therefore, the results reveal that CrHPRs are far more complex than previously recognized and provide a greatly expanded knowledge base for studies to understand how CrHPRs perform their functions in photorespiration. These will facilitate both modification of photorespiration and genetic engineering for crop improvement by synthetic biology.

2021 ◽  
Author(s):  
Menglin Shi ◽  
Lei Zhao ◽  
Yong Wang

Photorespiration plays an important role in maintaining normal physiological metabolism in higher plants and other oxygenic organisms such as algae. The unicellular eukaryotic organism Chlamydomonas is reported to have a different photorespiration system from that in higher plants, and only two out of nine genes encoding photorespiratory enzymes have been experimentally characterized. Hydroxypyruvate reductase (HPR), which is responsible for the conversion of hydroxypyruvate into glycerate, is poorly understood and not yet explored in Chlamydomonas. To identify the candidate genes encoding hydroxypyruvate reductase in Chlamydomonas (CrHPR) and uncover their elusive functions, we performed sequence comparison, enzyme activity measurement, subcellular localization, and analysis of knockout/knockdown strains. Together we identify five proteins to be good candidates as CrHPRs, all of which are detected with the activity of hydroxypyruvate reductase. CrHPR1, a NADH-dependent enzyme in mitochondria, may function as the major component of photorespiration, and deletion of CrHPR1 causes severe photorespiratory defects. CrHPR2 takes parts in the cytosolic bypass of photorespiration as the compensatory pathway of CrHPR1 for the reduction of hydroxypyruvate. CrHPR4, with NADH as the cofactor, may participate in photorespiration by acting as the chloroplastidial glyoxylate reductase in glycolate-quinone oxidoreductase system. Therefore, our results reveal that the CrHPRs are far more complex than previously recognized, and provide a greatly expanded knowledge base for studies to understand how CrHPRs perform their functions in photorespiration. These will facilitate the genetic engineering for crop improvement by synthetic biology.


Author(s):  
Vanessa Vernoud ◽  
Ludivine Lebeigle ◽  
Jocelyn Munier ◽  
Julie Marais ◽  
Myriam Sanchez ◽  
...  

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 483
Author(s):  
Tomohiro Morohoshi ◽  
Yaoki Kamimura ◽  
Nobutaka Someya

N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signals in Gram-negative bacteria. Many genes encoding AHL-degrading enzymes have been cloned and characterized in various microorganisms. Coagulase-negative staphylococci (CNS) are present on the skin of animals and are considered low-virulent species. The AHL-lactonase gene homologue, ahlS, was present in the genomes of the CNS strains Staphylococcus carnosus, Staphylococcus haemolyticus, Staphylococcus saprophyticus, and Staphylococcus sciuri. We cloned the candidate ahlS homologue from six CNS strains into the pBBR1MCS5 vector. AhlS from the CNS strains showed a higher degrading activity against AHLs with short acyl chains compared to those with long acyl chains. AhlS from S. sciuri was expressed and purified as a maltose-binding protein (MBP) fusion. Pseudomonas aeruginosa is an opportunistic pathogen that regulates several virulence factors such as elastase and pyocyanin by quorum-sensing systems. When MBP-AhlS was added to the culture of P. aeruginosa PAO1, pyocyanin production and elastase activity were substantially reduced compared to those in untreated PAO1. These results demonstrate that the AHL-degrading activity of AhlS from the CNS strains can inhibit quorum sensing in P. aeruginosa PAO1.


Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1811-1819 ◽  
Author(s):  
F.M. Carland ◽  
N.A. McHale

We have taken a genetic approach to understanding the mechanisms that control vascular patterning in the leaves of higher plants. Here we present the identification and characterization of the lop1 mutant of Arabidopsis which is defective in basipetal transport of IAA. Mutant leaf midveins show disoriented axial growth, and bifurcation into twin veins that are frequently rotated out of the normal dorsal/ventral axis of the leaf. Mutant plants also display abnormal patterns of cell expansion in the midrib cortex and in the epidermis of the elongation zone of lateral roots. Lateral roots show abnormal curvature during initiation, sometimes encircling the primary root prior to growth in a normal downward direction. Mutant seedlings have normal levels of free IAA, and appear normal in auxin perception, suggesting that transport is the primary lesion. The abnormalities in vascular development, lateral root initiation and patterns of cell expansion observed in the lop] mutant are consistent with a basic disruption in basipetal transport of IAA.


2019 ◽  
Vol 20 (10) ◽  
pp. 2394 ◽  
Author(s):  
Minerva Mata-Rocha ◽  
Angelica Rangel-López ◽  
Elva Jiménez-Hernández ◽  
Blanca Angélica Morales-Castillo ◽  
Carolina González-Torres ◽  
...  

Acute lymphoblastic leukemia is the most common type of childhood cancer worldwide. Mexico City has one of the highest incidences and mortality rates of this cancer. It has previously been recognized that chromosomal translocations are important in cancer etiology. Specific fusion genes have been considered as important treatment targets in childhood acute lymphoblastic leukemia (ALL). The present research aimed at the identification and characterization of novel fusion genes with potential clinical implications in Mexican children with acute lymphoblastic leukemia. The RNA-sequencing approach was used. Four fusion genes not previously reported were identified: CREBBP-SRGAP2B, DNAH14-IKZF1, ETV6-SNUPN, ETV6-NUFIP1. Although a fusion gene is not sufficient to cause leukemia, it could be involved in the pathogenesis of the disease. Notably, these new translocations were found in genes encoding for hematopoietic transcription factors which are known to play an important role in leukemogenesis and disease prognosis such as IKZF1, CREBBP, and ETV6. In addition, they may have an impact on the prognosis of Mexican pediatric patients with ALL, with the potential to be included in the current risk stratification schemes or used as therapeutic targets.


2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


2008 ◽  
Vol 74 (24) ◽  
pp. 7607-7612 ◽  
Author(s):  
Edyta Szewczyk ◽  
Yi-Ming Chiang ◽  
C. Elizabeth Oakley ◽  
Ashley D. Davidson ◽  
Clay C. C. Wang ◽  
...  

ABSTRACT The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.


Sign in / Sign up

Export Citation Format

Share Document