scholarly journals PsEND1 Is a Key Player in Pea Pollen Development Through the Modulation of Redox Homeostasis

2021 ◽  
Vol 12 ◽  
Author(s):  
Rim Hamza ◽  
Edelín Roque ◽  
Concepción Gómez-Mena ◽  
Francisco Madueño ◽  
José Pío Beltrán ◽  
...  

Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.

2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


1992 ◽  
Vol 12 (8) ◽  
pp. 3653-3662
Author(s):  
P Lowings ◽  
U Yavuzer ◽  
C R Goding

Melanocytes are specialized cells residing in the hair follicles, the eye, and the basal layer of the human epidermis whose primary function is the production of the pigment melanin, giving rise to skin, hair, and eye color. Melanogenesis, a process unique to melanocytes that involves the processing of tyrosine by a number of melanocyte-specific enzymes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), occurs only after differentiation from the melanocyte precursor, the melanoblast. In humans, melanogenesis is inducible by UV irradiation, with melanin being transferred from the melanocyte in the epidermis to the surrounding keratinocytes as protection from UV-induced damage. Excessive exposure to UV, however, is the primary cause of malignant melanoma, an increasingly common and highly aggressive disease. As an initial approach to understanding the regulation of melanocyte differentiation and melanocyte-specific transcription, we have isolated the gene encoding TRP-1 and examined the cis- and trans-acting factors required for cell-type-specific expression. We find that the TRP-1 promoter comprises both positive and negative regulatory elements which confer efficient expression in a TRP-1-expressing, pigmented melanoma cell line but not in NIH 3T3 or JEG3 cells and that a minimal promoter extending between -44 and +107 is sufficient for cell-type-specific expression. Assays for DNA-protein interactions coupled with extensive mutagenesis identified three factors, whose binding correlated with the function of two positive and one negative regulatory element. One of these factors, termed M-box-binding factor 1, binds to an 11-bp motif, the M box, which acts as a positive regulatory element both in TRP-1-expressing and -nonexpressing cell lines, despite being entirely conserved between the melanocyte-specific tyrosinase and TRP-1 promoters. The possible mechanisms underlying melanocyte-specific gene expression are discussed.


2020 ◽  
Vol 61 (1) ◽  
pp. 45-54
Author(s):  
Lashaihun Dohtdong ◽  
Nikhil Kumar Chrungoo

Seed storage proteins of grain crops meet the major dietary protein requirement of over half of the world population. PCR based genome walking the 5’UTR of the gene coding for a lysine rich legumin type protein amplified a 1.1kb DNA fragment representing the promoter region of the gene. Clustal alignment of this sequence with other sequences in the Genbank database clearly showed 100 percent complementary base match of 282 bases at the 3’ end of the sequence, corresponding to nucleotide position 780-1062 with correspondingly similar number of bases on the 5’ end of the 1.7kb Bwleg gene.We detected one prolamin box and three RY-repeat motifs in the sequence. Seven deletion fragments of the putative promoter were generated by 5’ nested PCR and cloned in pCAMBIA1304 upstream of GUS gene after excising the CaMV 35S promoter from the vector. Arabidopsis plants plants harbouring the deletion construct pBwlDF1 to pBwlDF6 clearly showed seed specific expression of the reporter gene. Seeds harbouring the constructs pBwlDF3, pBwlDF4 and pBwlDF5 showed a nearly threefold decrease in GUS activity than those harbouring the construct with full length promoter. Key words: buckwheat, DNA, promoter, constructs   Izvleček Založne beljakovine semen zrnastih poljščin ustrezajo glavnim potrebam po beljakovinah za več kot polovico svetovnega prebivalstva. S PCR in 5’UTR so za kodiranje kakovostnih beljakovin leguminskega tipa pomnožili odlomek 1,1 kb DNK, ki je promotorsko gensko območje. Vzporejanje te sekvence z drugimi sekvencami podatkovne baze genske banke jasno pokaže popolno komplementarnost 282 baz na 3’ koncu sekvence, kar ustreza pozicijam 780-1062 z ustreznim številom baz na 5’ koncu gena 1,7 kb Bwleg. V sekvenci smo odkrili eno prolaminsko škatljo in tri RY-ponovljene motive. Sedem delecijskih fragmentov putativnega promotorja smo generirali z 5’ PCR kloniranjem pCAMBIA1304 navzgor od GUS gena po izločitvi promotorja CaMV 35S iz vektorja. Semena s konstrukti pBwlDF3, pBwlDF4 in pBwlDF5 so izražali skoraj trikratno zmanjšanje GUS aktivnosti v primerjavi s konstrukti, ki so vsebovali polne dolžine promotorjev.  Ključne besede: ajda, DNK, promotor, konstrukti


2021 ◽  
Author(s):  
Blanca Salazar-Sarasua ◽  
María Jesús López-Martín ◽  
Edelín Roque ◽  
Rim Hamza ◽  
Luis Antonio Cañas ◽  
...  

ABSTRACTThe tapetum is a specialized layer of cells within the anther adjacent to the sporogenic tissue. During its short life, it provides nutrients, molecules and materials to the pollen mother cells and microsporocytes being essential during callose degradation and pollen wall formation. However, the acquisition of tapetal cell identity in tomato plants is a process still poorly understood. We report here the identification and characterization of SlTPD1 (Solanum lycopersicum TPD1), a gene specifically required for pollen development in tomato plants. Gene editing was used to generate loss-of-function Sltpd1 mutants that showed absence of tapetal tissue. In these plants, sporogenous cells developed but failed to complete meiosis resulting in complete male sterility. Transcriptomic analysis conducted in wild-type and mutant anthers at an early stage revealed the down regulation of a set of genes related to redox homeostasis. Indeed, Sltpd1 anthers showed a reduction of reactive oxygen species (ROS) accumulation at early stages and altered activity of ROS scavenging enzymes. The obtained results highlight the importance of ROS homeostasis in the interaction between the tapetum and the sporogenous tissue in tomato plants.One sentence summaryThe small protein SlTPD1 is required for tapetum formation in tomato, highlighting the role of this tissue in the regulation of redox homeostasis during male gametogenesis.


2021 ◽  
Vol 63 (7) ◽  
pp. 48-52
Author(s):  
Tien Dung Nguyen ◽  
◽  
Bich Hue Trieu ◽  
Xuan Vu Nguyen ◽  
◽  
...  

Tissue and organ-specific expression genes induced by Cis-regulator elements (CREs) are distributed in the promoter region of a gene. In rice, pollen-specific genes have been investigated to identify CREs related to specific expression in anther and pollen grain such as GTGANTG10, POLLEN1LELAT52... RMP1 and RMP2genes that specifically express the early stage of pollen development were analysed their promoter region using NEW PLACE and PlantCARE tools. Results showed that 80 CREs were located in the RMP1 promoter and 95 CREs in the RMP2. Among them, 6 CREs are abundant distribution with from 12 to 25 copies, including ARR1AT, CAATBOX1, CACTFTPPCA1, DOFCOREZM, EBOXBNNAPA, and GATABOX. Interestingly, two pollen-specific CREs, GTGANTG10, POLLEN1LELAT52, were also found in RMP1 and RMP2 promoters. In which, GTGANTG10 was counted 14 copies in RMP1 and 21 copies in RMP2, whereas, POLLEN1LELAT52 was found 4 and 21 copies in RMP1and RMP2, respectively


2019 ◽  
Vol 20 (23) ◽  
pp. 5974 ◽  
Author(s):  
Xian Liu ◽  
Zhiguo Liu ◽  
Xinhui Niu ◽  
Qian Xu ◽  
Long Yang

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and its paralogues NPR3 and NPR4, are bona fide salicylic acid (SA) receptors and play critical regulatory roles in plant immunity. However, comprehensive identification and analysis of the NPR1-like gene family had not been conducted so far in bread wheat and its relatives. Here, a total of 17 NPR genes in Triticum aestivum, five NPR genes in Triticum urartu, 12 NPR genes in Triticum dicoccoides, and six NPR genes in Aegilops tauschii were identified using bioinformatics approaches. Protein properties of these putative NPR1-like genes were also described. Phylogenetic analysis showed that the 40 NPR1-like proteins, together with 40 NPR1-related proteins from other plant species, were clustered into three major clades. The TaNPR1-like genes belonging to the same Arabidopsis subfamilies shared similar exon-intron patterns and protein domain compositions, as well as conserved motifs and amino acid residues. The cis-regulatory elements related to SA were identified in the promoter regions of TaNPR1-like genes. The TaNPR1-like genes were intensively mapped on the chromosomes of homoeologous groups 3, 4, and 5, except TaNPR2-D. Chromosomal distribution and collinearity analysis of NPR1-like genes among bread wheat and its relatives revealed that the evolution of this gene family was more conservative following formation of hexaploid wheat. Transcriptome data analysis indicated that TaNPR1-like genes exhibited tissue/organ-specific expression patterns and some members were induced under biotic stress. These findings lay the foundation for further functional characterization of NPR1-like proteins in bread wheat and its relatives.


1992 ◽  
Vol 12 (8) ◽  
pp. 3653-3662 ◽  
Author(s):  
P Lowings ◽  
U Yavuzer ◽  
C R Goding

Melanocytes are specialized cells residing in the hair follicles, the eye, and the basal layer of the human epidermis whose primary function is the production of the pigment melanin, giving rise to skin, hair, and eye color. Melanogenesis, a process unique to melanocytes that involves the processing of tyrosine by a number of melanocyte-specific enzymes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), occurs only after differentiation from the melanocyte precursor, the melanoblast. In humans, melanogenesis is inducible by UV irradiation, with melanin being transferred from the melanocyte in the epidermis to the surrounding keratinocytes as protection from UV-induced damage. Excessive exposure to UV, however, is the primary cause of malignant melanoma, an increasingly common and highly aggressive disease. As an initial approach to understanding the regulation of melanocyte differentiation and melanocyte-specific transcription, we have isolated the gene encoding TRP-1 and examined the cis- and trans-acting factors required for cell-type-specific expression. We find that the TRP-1 promoter comprises both positive and negative regulatory elements which confer efficient expression in a TRP-1-expressing, pigmented melanoma cell line but not in NIH 3T3 or JEG3 cells and that a minimal promoter extending between -44 and +107 is sufficient for cell-type-specific expression. Assays for DNA-protein interactions coupled with extensive mutagenesis identified three factors, whose binding correlated with the function of two positive and one negative regulatory element. One of these factors, termed M-box-binding factor 1, binds to an 11-bp motif, the M box, which acts as a positive regulatory element both in TRP-1-expressing and -nonexpressing cell lines, despite being entirely conserved between the melanocyte-specific tyrosinase and TRP-1 promoters. The possible mechanisms underlying melanocyte-specific gene expression are discussed.


1993 ◽  
Vol 13 (9) ◽  
pp. 5133-5140 ◽  
Author(s):  
A M Simon ◽  
S J Burden

The genes encoding the skeletal muscle acetylcholine receptor (AChR) are induced during muscle development and are regulated subsequently by innervation. Because both the initiation and the subsequent regulation of AChR expression are controlled by transcriptional mechanisms, an understanding of the steps that regulate AChR expression following innervation is likely to require knowledge of the pathway that activates AChR genes during myogenesis. Thus, we sought to identify the cis-acting sequences that regulate expression of the AChR delta-subunit gene during muscle differentiation. We transfected muscle and nonmuscle cell lines with gene fusions between 5'-flanking DNA from the AChR delta-subunit gene and the human growth hormone gene, and we show here that 148 bp of 5'-flanking DNA from the AChR delta-subunit gene contains two regulatory elements that control muscle-specific gene expression. One element is an E box, which is important both for activation of the delta-subunit gene in myotubes and for its repression in myoblasts and nonmuscle cells. Mutation of this E box, which prevents binding of MyoD-E2A and myogenin-E2A heterodimers, decreases expression in myotubes and increases expression in myoblasts and nonmuscle cells. An E-box binding activity, which does not contain MyoD, myogenin, or E2A proteins, is present in muscle and nonmuscle cells and may be responsible for repressing the delta-subunit gene in myoblasts and nonmuscle cells. An enhancer, which lacks E boxes, is also required for expression of the delta-subunit gene but does not confer muscle-specific expression.


2021 ◽  
Vol 22 (19) ◽  
pp. 10218
Author(s):  
Lidiya Mishchenko ◽  
Taras Nazarov ◽  
Alina Dunich ◽  
Ivan Mishchenko ◽  
Olga Ryshchakova ◽  
...  

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and β-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and β-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Sign in / Sign up

Export Citation Format

Share Document