scholarly journals Does Climate Warming Favour Early Season Species?

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuli Chu ◽  
Rongzhou Man ◽  
Haicheng Zhang ◽  
Wenping Yuan ◽  
Jing Tao ◽  
...  

Plant species that start early in spring are generally more responsive to rising temperatures, raising concerns that climate warming may favour early season species and result in altered interspecific interactions and community structure and composition. This hypothesis is based on changes in spring phenology and therefore active growing season length, which would not be indicative of possible changes in growth as would changes in cumulative forcing temperatures (growing degree days/hours) in the Northern Hemisphere. In this study we analysed the effects of a moderate climate warming (2°C warmer than the 1981–2010 baseline) on the leaf-out of hypothetical species without chilling restriction and actual plant species with different chilling and forcing requirements in different parts of the globe. In both cases, early season species had larger phenological shifts due to low leaf-out temperatures, but accumulated fewer forcing gains (changes in cumulative forcing temperatures by warming) from those shifts because of their early spring phenology. Leaf-out time was closely associated with leaf-out temperatures and therefore plant phenological responses to climate warming. All plant species would be equally affected by climate warming in terms of total forcing gains added from higher temperatures when forcing gains occurring between early and late season species are included. Our findings will improve the understanding of possible mechanisms and consequences of differential responses in plant phenology to climate warming.

2021 ◽  
Author(s):  
◽  
Justyna Giejsztowt

<p>Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species-specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C. vulgaris and implement it to determine the combined risk of climate change and plant invasion on the distribution of native plant species; and 4) explore the possible mechanisms leading to a discrepancy in C. vulgaris invasion success on the North and South Islands of New Zealand. I show that species-specific phenological responses to climate warming increase the flowering overlap between a native and an invasive plant. I then show that competition for pollination with the invader decreases the sexual reproduction of the native in some landscapes. I therefore illustrate a previously undescribed interaction between climate warming and plant invasion where the effects of competition for pollination with an invader on the sexual reproduction of the native may be exacerbated by climate warming. Furthermore, I describe a previously unknown pattern of changing invasive plant impact on SAR along an environmental stress gradient. Namely, I demonstrate that interactions between an invasive plant and local native plant species richness become increasingly facilitative along elevational gradients and that the strength of plant interactions is dependent on invader biomass. I then show that the consequences of changing plant interactions at a local scale for the slope of SAR is dependent on the pervasion of the invader. Next, I demonstrate that the inclusion of invasive species density data in distribution models for a native plant leads to greater reductions in predicted native plant distribution and density under future climate change scenarios relative to models based on climate suitability alone. Finally, I find no evidence for large-scale climatic, edaphic, and vegetative limitations to invasion by C. vulgaris on either the North and South Islands of New Zealand. Instead, my results suggest that discrepancies in invasive spread between islands may be driven by human activity: C. vulgaris is associated with the same levels of human disturbance on both islands despite differences in the presence of these conditions between then islands. Altogether, these results show that interactive effects between drivers on biodiversity and ecosystem dynamics are frequently not additive or linear. Therefore, accurate predictions of global change impacts on community structure and ecosystems function require experiments and models which include of interactions among drivers such as climate change and species invasion. These results are pertinent to effective conservation management as most landscapes are concurrently affected by multiple drivers of global environmental change.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandra Kehrberger ◽  
Andrea Holzschuh

Abstract Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.


2020 ◽  
Author(s):  
I C Richmond ◽  
S J Leroux ◽  
T R Heckford ◽  
E Vander Wal ◽  
M Rizzuto ◽  
...  

Abstract Aims Intraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging. For plants, trait variability across spatial dimensions is well documented. However, temporal dimensions of trait variability are less well known, and may be influenced by seasonal differences in growing degree days, temperature, and precipitation. Here, we aim to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly occurring boreal plant species. Methods We sampled the elemental and stoichiometric traits (%C, %N, %P, C:N, C:P, N:P) of four common browse species’ foliage across two years. Using a two-step approach, we first fitted generalized linear models (GzLM, n = 24) to the species’ elemental and stoichiometric traits, and tested if they varied across years. When we observed evidence for temporal variability, we fitted a second set of GzLMs (n = 8) with temperature, productivity, and moisture as explanatory variables. Important Findings We found no evidence of temporal variation for most of the elemental and stoichiometric traits of our four boreal plants, with two exceptions. Year was an important predictor for percent carbon across all four species (R 2 = 0.47 to 0.67) and for multiple elemental and stoichiometric traits in balsam fir (5/8, R 2 = 0.29 to 0.67). Thus, variation in percent carbon was related to interannual differences, more so than nitrogen and phosphorus, which are limiting nutrients in the boreal forest. These results also indicate that year may explain more variation in conifers’ stoichiometry than for deciduous plants due to life history differences. Growing degree days (GDD) was the most frequently occurring variable in the second round of models (8/8 times, R 2 = 0.21 to 0.41), suggesting that temperature is an important driver of temporal variation in these traits.


2007 ◽  
Vol 37 (2) ◽  
pp. 505-512 ◽  
Author(s):  
Gilles Houle

Increases in the emission of greenhouse gases, particularly during the second half of the 20th century, have been associated with climate warming at the global scale. High latitude areas have been reported to be particularly sensitive to such changes, with significant impacts on plant phenology. The objectives of the present study were to (i) estimate changes in the flowering dates of 18 spring-flowering herbaceous plant species typical of the deciduous forests of eastern North America in three areas of eastern Canada (Gatineau–Ottawa, Montréal, and Québec) from 1900 to 2000 and (ii) associate these changes with those of annual and spring local temperatures. My results show a 2–6 days advance in flowering date over 100 years, depending on the region considered (corresponding to a ~2–3 days advance per 1 °C); these values are somewhat lower than those published in other studies, but still support the increasing body of literature on the effects of climate warming on plant phenology. Shifts in flowering phenology were particularly evident for Montréal, a large metropolitan region; this suggests that global climate warming, and its effects on plant phenology, may be exacerbated by local conditions, particularly those associated with large urban areas. Furthermore, species-specific responses to climate warming, as those presented here, might lead to significant changes in community composition and ecosystem functions.


2006 ◽  
Vol 288 (1-2) ◽  
pp. 249-261 ◽  
Author(s):  
H. J. De Boeck ◽  
C. M. H. M. Lemmens ◽  
H. Bossuyt ◽  
S. Malchair ◽  
M. Carnol ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 204-212
Author(s):  
Hua Ma ◽  
Li-Juan Cui ◽  
Xu Pan ◽  
Wei Li ◽  
Yu Ning ◽  
...  

Abstract Aims In estuarine salt-marshes, nitrate supply and soil salinity, which are known as two main environmental drivers, simultaneously affect the interspecific interactions between plant species. However, to date, their interactive effects on interspecific interactions have not been closely examined for salt-marsh plant species. Methods Juvenile plants of Suaeda salsa L. (Chenopodiaceae) and Scirpus planiculmis Fr. (Cyperaceae) were grown in rinsed river sand to conduct a greenhouse experiment with three treatment categories: interspecific interaction (mixed culture or monoculture), three salinity levels (1, 50 and 100 mmol L−1) and three nitrate levels (0.5, 5 and 10 mmol L−1). First, height and biomass of all plants were measured. Then, the growth data, relative interaction index and competitive important index of the two species were analyzed. Important Findings The interspecific interactions between S. salsa and S. planiculmis were facilitation across the salinity gradients. The promotion of S. salsa growth with high nitrate supply did not enhance the facilitative effect of the species, especially at low salinity. However, high nitrate supply significantly shifted the interspecific interactions of S. planiculmis from facilitation to competition at high salinity. Our results suggest that excessive nitrate application changes the prediction of the stress-gradient hypothesis along a salinity gradient, leading to collapse of the two species coexistence in the salt-marshes. These findings make a contribution to the understanding of how S. salsa and S. planiculmis, as well as salt-marsh communities, respond to the human modification of estuarine nutritional levels.


Author(s):  
Magdalena Daria Vaverková ◽  
Dana Adamcová ◽  
Jan Winkler ◽  
Eugeniusz Koda ◽  
Jana Červenková ◽  
...  

When the landfill use comes to end, important subsequent steps include aftercare, safety assurance, and ecological regeneration. Landfill revegetation is cost-effective and eco-friendly approach in the management of landfill areas, which serves the purpose of stabilization and provides a pleasant landscape. There are various vegetation types that can be planted, yet grass species are often used for low-cost reasons. Plants can be important sources of air pollution, particularly by grass pollen. The main goal of our study was to identify plant species that produce allergenic pollen. Long-term vegetation monitoring took place on three sites in the growing seasons of years 2008–2018. Studied objects were landfills located in the Czech Republic. The vegetation was assessed using a floristic survey of identified plant species. Plant species that produced allergens were recorded. During the monitoring, 298 plant species were determined. Plant species with allergenic pollen have a considerable share in the landfill vegetation. Thus, landfills are potential sources of various kinds of allergenic pollen. Moreover, our results indicated that there are three periods of pollen production: early spring, late spring, and early summer; late summer; and autumn. The second period is typical for the production of highly allergenic pollen by grasses. Most detected plant species with allergenic pollen are common for all monitored sites, which demonstrates that the vegetation of landfills is a significant source of allergenic pollen.


2012 ◽  
Vol 51 (11) ◽  
pp. 2060-2073 ◽  
Author(s):  
Kari E. Skaggs ◽  
Suat Irmak

AbstractAir temperature influences agricultural practices and production outcomes, making detailed quantifications of temperature changes necessary for potential positive and negative effects on agricultural management practices to be exploited or mitigated. Temperature trends of long-term data for five agricultural locations, ranging from the subhumid eastern to the semiarid western parts of Nebraska, were studied to determine local temperature changes and their potential effects on agricultural practices. The study quantified trends in annual and monthly average maximum and minimum air temperature (Tmax and Tmin), daily temperature range (DTR), total growing degree-days, extreme temperatures, growing‐season dates and lengths, and temperature distributions for five heavily agricultural areas of Nebraska: Alliance, Central City, Culbertson, Fremont, and Hastings. July and August were the months with the greatest decreases in Tmax for the central part of Nebraska—Culbertson, Hastings, and Central City. Alliance, Culbertson, and Fremont had year-round decreases in DTR. Central City and Hastings experienced growing‐season decreases in DTR. Increases in growing‐season length occurred at rates of 14.3, 16.7, and 11.9 days century−1 for Alliance, Central City, and Fremont, respectively. At Hastings, moderately earlier last spring frost (LS) at a rate of 6.6 days century−1 was offset by an earlier (2.7 days century−1) first fall frost (FF), resulting in only a 3.8 days century−1 longer growing season. There were only slight changes in LS and FF dates of around 2 days earlier and 1 day later per century, respectively, for Culbertson.


Sign in / Sign up

Export Citation Format

Share Document