scholarly journals The Chemical Environment at Maturation Stage in Pinus spp. Somatic Embryogenesis: Implications in the Polyamine Profile of Somatic Embryos and Morphological Characteristics of the Developed Plantlets

2021 ◽  
Vol 12 ◽  
Author(s):  
Antonia Maiara Marques do Nascimento ◽  
Luiza Giacomolli Polesi ◽  
Franklin Panato Back ◽  
Neusa Steiner ◽  
Miguel Pedro Guerra ◽  
...  

Changes in the chemical environment at the maturation stage in Pinus spp. somatic embryogenesis will be a determinant factor in the conversion of somatic embryos to plantlets. Furthermore, the study of biochemical and morphological aspects of the somatic embryos could enable the improvement of somatic embryogenesis in Pinus spp. In the present work, the influence of different amino acid combinations, carbohydrate sources, and concentrations at the maturation stage of Pinus radiata D. Don and Pinus halepensis Mill. was analyzed. In P. radiata, the maturation medium supplemented with 175 mM of sucrose and an increase in the amino acid mixture (1,100 mgL–1 of L-glutamine, 1,050 mgL–1 of L-asparagine, 350 mgL–1 of L-arginine, and 35 mgL–1 of L-proline) promoted bigger embryos, with a larger stem diameter and an increase in the number of roots in the germinated somatic embryos, improving the acclimatization success of this species. In P. halepensis, the maturation medium supplemented with 175 mM of maltose improved the germination of somatic embryos. The increase in the amount of amino acids in the maturation medium increased the levels of putrescine in the germinated somatic embryos of P. halepensis. We detected significant differences in the amounts of polyamines between somatic plantlets of P. radiata and P. halepensis; putrescine was less abundant in both species. For the first time, in P. radiata and P. halepensis somatic embryogenesis, we detected the presence of cadaverine, and its concentration changed according to the species.

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 807 ◽  
Author(s):  
Cátia Pereira ◽  
Ander Castander-Olarieta ◽  
Itziar A. Montalbán ◽  
Aleš Pěnčík ◽  
Ivan Petřík ◽  
...  

Aleppo pine (Pinus halepensis Mill.), a native species of the Mediterranean region, has been suggested as a species that when introduced in degraded areas could facilitate the long-term colonization and expansion of late-successional species. Due to climate changes, plants need to withstand extreme environmental conditions through adaptation and changings in developmental pathways. Among other paths, plants undergo changes in developmental pathways controlled by phytohormones. At the same time, somatic embryogenesis has been widely used as a model to understand the mechanisms involved in plant response to different stresses. In this study, in order to induce a strong effect of temperature stress on plants regenerated from somatic embryos, higher temperatures (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) than the control (23 °C) were applied during the induction stage of somatic embryogenesis in Pinus halepensis. A morphological characterization of the embryogenic cultures showed small differences in the number of starch grains, lipid bodies, and phenolic compounds between treatments. Results showed that high temperatures (60 °C) led to higher rates at the maturation stage of somatic embryogenesis when compared to the control (23 °C), strengthening the productivity through the increase in the number of somatic embryos obtained. Finally, analysis of endogenous concentration of cytokinins showed that different conditions applied during the initiation phase of somatic embryogenesis led to different hormonal profiles; isoprenoid cytokinins showed a clear defined pattern with the higher total hormone concentration being found in embryonal masses induced at 50 °C for 30 min, while different aromatic cytokinins presented different individual responses to the treatments applied. These differences corroborate the idea that cytokinins could be potential regulators of stress–response processes during initial steps of somatic embryogenesis.


2016 ◽  
Vol 71 (2) ◽  
Author(s):  
Fetrina OKTAVIA ◽  
. SWANTO ◽  
Asmini BUDIANI

SummaryTissue culture technique for arabica coffeefaces some problems, mainly in plantletsregeneration from cultured explants. Theobjectives of this experiment were to examine theeffect 2,4-D and 2-ip combinations on somaticembryogenesis and regeneration of arabicacoffee from several different explants. Basalmedium used in this experiment was MS mediumwith ½ concentration of macro and micro salts.Experiment to induce primary somatic embryos(SE) was arranged in factorial randomizedcomplete design with 10 repeats. The first factorwas the type of explants, leaf, epicotyl, hipocotyland root explants. The second factor was plantgrowth regulator i.e. combination of 1  M 2,4-Dwith 5, 10, 15, 20  M and combination of 5  M2,4-D with 5, 10, 15 and 20  M 2-ip. To multiplySE, secondary SE was induced from primary SEon medium containing combination of 0.6  MIAA and 13.3; 17.8 and 22.2  M BAP.Cotyledonary SE were germinated on mediacontaining GA 3 (0, 5, 10 and 15  M), and thenregenerated on medium free of growth regulator.Plantlets with 4-5 leaf pairs were transfered intothe soil medium for acclimatization. The resultsshow that primary SE can be induced from allexplants with the highest frequency on mediumcontaining 1  M 2,4-D and 15  M 2-ip.Induction of primary SE, in leaf explant wasmore effective than other explants. Mediumcontaining 0.6  M IAA and 22.2  M BAP gavethe highest percentage of SE multiplication i.e.52.6% with average SE number of 6.25. Plantletsregeneration can be conducted by culturing SEon maturation medium free of growth regulatorfor one month followed by germinating onmedium containing GA 3 , and then culturing onmedium free of growth regulator again. Thehighest percentage of germinated embryos wasobtained after three weeks and six weekscultured in the medium containing 5  M GA 3 , i.e49% and 90.15 respectively. From total plantletsobtained, 75% of them were normal. Sixtypercents of the young plants grew well in thegreenhouse.RingkasanTeknik kultur jaringan tanaman kopi arabikamasih menghadapi beberapa kendala terutamapada tingkat regenerasi planlet dari eksplan yangdikulturkan. Penelitian ini bertujuan untukmengetahui pengaruh kombinasi 2,4-D dan 2-ipterhadap embriogenesis somatik dan regenerasikopi arabika dari berbagai eksplan. Media dasaryang digunakan adalah medium MS ½konsentrasi garam makro dan mikro. Percobaaninduksi embrio somatik (ES) primer disusunmenurut rancangan acak lengkap faktorial dengan10 ulangan. Faktor pertama adalah jenis eksplan,erdiri atas daun, epikotil, hipokotil dan akar invitro. Faktor kedua adalah zat pengatur tumbuh,yaitu kombinasi 1 M 2,4-D dengan 5, 10, 15dan 20M 2-ip, serta kombinasi 5 M 2,4-Ddengan 5, 10, 15 dan 20 M 2-ip. Untuk mem-perbanyak jumlah ES yang didapatkan, dilakukaninduksi ES sekunder dari ES primer pada mediumyang mengandung kombinasi 0,6 M IAA dan13,3; 17,8 dan 22,2 M BAP. ES fase kotiledonkemudian dikecambahkan pada medium yangmengandung GA 3 (0, 5, 10 dan 15 M) danselanjutnya diregenerasikan pada medium tanpazat pengatur tumbuh. Planlet yang mempunyai4-5 pasang daun dipindahkan ke medium tanahuntuk aklimatisasi. Hasil yang diperolehmenunjukkan bahwa ES primer dapat diinduksipada semua eksplan yang digunakan denganfrekuensi tertinggi pada medium yang me-ngandung 1 M 2,4-D dan 15 M 2-ip. InduksiES primer pada eksplan daun lebih efektifdibandingkan eksplan lainnya. Untuk per-banyakan ES, medium yang mengandung IAA0,6 M dan BAP 22,2 M memberikanpersentase tertinggi pembentukan ES sekunderyaitu 52,6% dengan rata-rata jumlah ES 6,25.Regenerasi planlet dapat dilakukan denganmengkulturkan ES pada medium maturasi tanpazat pengatur tumbuh selama satu bulan, kemudiandikecambahkan dalam medium yang mengan-dung GA 3 , dan selanjutnya dipindah ke mediumtanpa zat pengatur tumbuh kembali.Perkecambahan ES tertinggi diperoleh padamedium dengan penambahan GA 3 5 M yaitu40,9% setelah tiga minggu dan 90,1% setelahenam minggu. Dari total planlet diperoleh 75%planlet normal. Hasil aklimatisasi menunjukkanbahwa 60% bibit mampu bertahan di rumah kaca.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 693e-693
Author(s):  
Ji-Weon Lee ◽  
Byoung-Yil Lee

The study was carried out to examine the appropriate media, explant sources, and suitable growth regulators for somatic embryogenesis to establish a rapid mass production system via somatic embryogenesis in Oenanthe stolonifera DC. Modified MS media containing higher concentrations of NO3-N were more effective for the formation and development of the somatic embryos from embryogenic callus. Liquid media were more effective for the production of somatic embryos than solidified media. Immature florets were found to be the most competent explant sources for embryogenic callus formation. 2,4-D at 1mg/l was highly effective for the formation of embryogenic callus but inhibitory for the development and differentiation of somatic embryo. Somatic embryos were developed from the translucent and friable embryogenic callus. Addition of BA promoted the callus growth synefgistically with NAA and 2,4-D, but the production of embryogenic callus was inhibited by BA.


1990 ◽  
Vol 115 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Rebecca M. Cade ◽  
Todd C. Wehner ◽  
Frank A. Blazich

Two studies were conducted to test the effects of various tissue culture media on somatic embryogenesis from cotyledon tissue of cucumber (Cucumis sativus L.). The two best media for embryo initiation were Murashige and Skoog (MS) salts and vitamins containing either 1 or 2 mg 2,4-D/liter and 0.5 mg kinetin/liter. In the second study, embryos developed more normally. More plantlets developed when tissue was removed from the initiation medium after 3 weeks and transferred to MS containing 1 mg NAA/liter and 0.5 mg kinetin/liter for 3 weeks, rather than leaving the embryos on a medium containing 2,4-D. Histological evidence indicated that the embryos were multicellular in origin. Charcoal in the maturation medium inhibited embryo development. Chemical names used: (2,4-dichlorophenoxy) -acetic acid (2,4-D); N-(2-furanylmethyl)-lH-purine-6-amine (kinetin); 1-naphthaleneacetic acid (NAA).


2016 ◽  
Vol 71 (2) ◽  
Author(s):  
Fetrina OKTAVIA ◽  
. SWANTO ◽  
Asmini BUDIANI

SummaryTissue culture technique for arabica coffeefaces some problems, mainly in plantletsregeneration from cultured explants. Theobjectives of this experiment were to examine theeffect 2,4-D and 2-ip combinations on somaticembryogenesis and regeneration of arabicacoffee from several different explants. Basalmedium used in this experiment was MS mediumwith ½ concentration of macro and micro salts.Experiment to induce primary somatic embryos(SE) was arranged in factorial randomizedcomplete design with 10 repeats. The first factorwas the type of explants, leaf, epicotyl, hipocotyland root explants. The second factor was plantgrowth regulator i.e. combination of 1  M 2,4-Dwith 5, 10, 15, 20  M and combination of 5  M2,4-D with 5, 10, 15 and 20  M 2-ip. To multiplySE, secondary SE was induced from primary SEon medium containing combination of 0.6  MIAA and 13.3; 17.8 and 22.2  M BAP.Cotyledonary SE were germinated on mediacontaining GA 3 (0, 5, 10 and 15  M), and thenregenerated on medium free of growth regulator.Plantlets with 4-5 leaf pairs were transfered intothe soil medium for acclimatization. The resultsshow that primary SE can be induced from allexplants with the highest frequency on mediumcontaining 1  M 2,4-D and 15  M 2-ip.Induction of primary SE, in leaf explant wasmore effective than other explants. Mediumcontaining 0.6  M IAA and 22.2  M BAP gavethe highest percentage of SE multiplication i.e.52.6% with average SE number of 6.25. Plantletsregeneration can be conducted by culturing SEon maturation medium free of growth regulatorfor one month followed by germinating onmedium containing GA 3 , and then culturing onmedium free of growth regulator again. Thehighest percentage of germinated embryos wasobtained after three weeks and six weekscultured in the medium containing 5  M GA 3 , i.e49% and 90.15 respectively. From total plantletsobtained, 75% of them were normal. Sixtypercents of the young plants grew well in thegreenhouse.RingkasanTeknik kultur jaringan tanaman kopi arabikamasih menghadapi beberapa kendala terutamapada tingkat regenerasi planlet dari eksplan yangdikulturkan. Penelitian ini bertujuan untukmengetahui pengaruh kombinasi 2,4-D dan 2-ipterhadap embriogenesis somatik dan regenerasikopi arabika dari berbagai eksplan. Media dasaryang digunakan adalah medium MS ½konsentrasi garam makro dan mikro. Percobaaninduksi embrio somatik (ES) primer disusunmenurut rancangan acak lengkap faktorial dengan10 ulangan. Faktor pertama adalah jenis eksplan,erdiri atas daun, epikotil, hipokotil dan akar invitro. Faktor kedua adalah zat pengatur tumbuh,yaitu kombinasi 1 M 2,4-D dengan 5, 10, 15dan 20M 2-ip, serta kombinasi 5 M 2,4-Ddengan 5, 10, 15 dan 20 M 2-ip. Untuk mem-perbanyak jumlah ES yang didapatkan, dilakukaninduksi ES sekunder dari ES primer pada mediumyang mengandung kombinasi 0,6 M IAA dan13,3; 17,8 dan 22,2 M BAP. ES fase kotiledonkemudian dikecambahkan pada medium yangmengandung GA 3 (0, 5, 10 dan 15 M) danselanjutnya diregenerasikan pada medium tanpazat pengatur tumbuh. Planlet yang mempunyai4-5 pasang daun dipindahkan ke medium tanahuntuk aklimatisasi. Hasil yang diperolehmenunjukkan bahwa ES primer dapat diinduksipada semua eksplan yang digunakan denganfrekuensi tertinggi pada medium yang me-ngandung 1 M 2,4-D dan 15 M 2-ip. InduksiES primer pada eksplan daun lebih efektifdibandingkan eksplan lainnya. Untuk per-banyakan ES, medium yang mengandung IAA0,6 M dan BAP 22,2 M memberikanpersentase tertinggi pembentukan ES sekunderyaitu 52,6% dengan rata-rata jumlah ES 6,25.Regenerasi planlet dapat dilakukan denganmengkulturkan ES pada medium maturasi tanpazat pengatur tumbuh selama satu bulan, kemudiandikecambahkan dalam medium yang mengan-dung GA 3 , dan selanjutnya dipindah ke mediumtanpa zat pengatur tumbuh kembali.Perkecambahan ES tertinggi diperoleh padamedium dengan penambahan GA 3 5 M yaitu40,9% setelah tiga minggu dan 90,1% setelahenam minggu. Dari total planlet diperoleh 75%planlet normal. Hasil aklimatisasi menunjukkanbahwa 60% bibit mampu bertahan di rumah kaca.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1181
Author(s):  
Antonia Maiara Marques do Nascimento ◽  
Priscila Alves Barroso ◽  
Naysa Flavia Ferreira do Nascimento ◽  
Tomás Goicoa ◽  
María Dolores Ugarte ◽  
...  

Climatic variations in the current environmental scenario require plants with tolerance to sudden changes in temperature and a decrease in water availability. Accordingly, this tolerance will enable successful plantations and the maintenance of natural and planted forests. Consequently, in the last two decades, drought tolerance and high temperatures in conifers have been an important target for morphological, physiological, and epigenetic studies. Based on this, our research team has optimized different stages of somatic embryogenesis (SE) in Pinus spp. improving the success of the process. Through this method, we can obtain a large amount of clonal material and then analyze the somatic plants under different conditions ex vitro. The analysis of the morphological and physiological parameters in somatic embryos (ses) and plants with different tolerances to abiotic stress can provide us with valuable information about the mechanisms used by plants to survive under adverse environmental conditions. Thus, the objective of this work was to evaluate the influence of high temperatures (23, 40, 50, and 60 °C, after 12 weeks, 90, 30, 5 min, respectively) on the morphology of somatic embryos obtained from Pinus radiata D.Don (Radiata pine) and Pinus halepensis Mill. (Aleppo pine). In addition, we carried out a physiological evaluation of the somatic plants of P. radiata submitted to heat and water stress in a greenhouse. We observed that the number of somatic embryos was not affected by maturation temperatures in both species. Likewise, P. radiata plants obtained from these somatic embryos survived drought and heat stress in the greenhouse. In addition, plants originating from embryonal masses (EMs) subjected to high maturation temperature (40 and 60 °C) had a significant increase in gs and E. Therefore, it is possible to modulate the characteristics of somatic plants produced by the manipulation of environmental conditions during the process of SE.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Malá ◽  
M. Cvikrová ◽  
P. Máchová ◽  
O. Martincová

Contents of free polyamines (putrescine, spermidine and spermine) were determined in different developmental stages of Norway spruce (<I>Picea abies</I> [L.] Karst.) somatic embryos by means of HPLC. Determinations were performed embryogenic tissue after 4 weeks of the growth on proliferation medium, after 2 and 5 weeks of the culturing on maturation medium, and 2 weeks after desiccation. Maturation of somatic embryos (after 5 weeks) was accompanied by increase of concentrations of putrescine (2.3 times) and spermidine (3.2 times). In comparison with above mentioned polyamines, spermine concentrations were significantly lower (4.3 times). Two weeks after desiccation, the concentrations of putrescine decreased 5.4 times and spermidine 2.2 times in comparison with mature embryos. To improve the efficiency of somatic embryogenesis of less responsive genotypes, the supplementation of growth media by polyamines is discussed.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 573-576 ◽  
Author(s):  
I.E. Yates ◽  
C.C. Reilly

The influence of stage of fruit development and plant growth regulators on somatic embryogenesis and the relation of cultivar response on somatic embryogenesis and subsequent plant development have been investigated in eight cultivars of pecan [Carya illinoensis (Wangenh.) C. Koch]. Explants from the micropylar region of the ovule were more embryogenic when removed from fruits in the liquid endosperm stage than were intact ovules from less-mature fruits or from cotyledonary segments of more-mature fruits. Explants conditioned on medium containing auxin alone or auxin + cytokinin produced more somatic embryos than medium containing cytokinin alone. Under the conditions of this study, frequency of embryogenesis, as well as the germination of somatic embryos leading to plant development, indicated appreciable variation among cultivars. Plant development was greatest by far from somatic embryos of `Schley' than other cultivars studied.


Nutrition ◽  
2020 ◽  
Vol 69 ◽  
pp. 110588 ◽  
Author(s):  
Francesco Bellanti ◽  
Aurelio Lo Buglio ◽  
Elena Di Stasio ◽  
Giorgia di Bello ◽  
Rosanna Tamborra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document