scholarly journals Distinctive Traits for Drought and Salt Stress Tolerance in Melon (Cucumis melo L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Sergio Chevilly ◽  
Laura Dolz-Edo ◽  
Gema Martínez-Sánchez ◽  
Luna Morcillo ◽  
Alberto Vilagrosa ◽  
...  

Melon (Cucumis melo L.) is a crop with important agronomic interest worldwide. Because of the increase of drought and salinity in many cultivation areas as a result of anthropogenic global warming, the obtention of varieties tolerant to these conditions is a major objective for agronomical improvement. The identification of the limiting factors for stress tolerance could help to define the objectives and the traits which could be improved by classical breeding or other techniques. With this objective, we have characterized, at the physiological and biochemical levels, two different cultivars (sensitive or tolerant) of two different melon varieties (Galia and Piel de Sapo) under controlled drought or salt stress. We have performed physiological measurements, a complete amino acid profile and we have determined the sodium, potassium and hormone concentrations. This has allowed us to determine that the distinctive general trait for salt tolerance in melon are the levels of phenylalanine, histidine, proline and the Na+/K+ ratio, while the distinctive traits for drought tolerance are the hydric potential, isoleucine, glycine, phenylalanine, tryptophan, serine, and asparagine. These could be useful markers for breeding strategies or to predict which varieties are likely perform better under drought or salt stress. Our study has also allowed us to identify which metabolites and physiological traits are differentially regulated upon salt and drought stress between different varieties.

2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Irriga ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 469-484 ◽  
Author(s):  
Maria Ângela Casimiro Lopes ◽  
Rafael Vitor da Silveira Muniz ◽  
Samara Sibelle Vieira Alves ◽  
Aline Costa Ferreira ◽  
Francisco Vanies da Silva Sá ◽  
...  

ÁGUA SALINA E SUBSTRATOS NO CRESCIMENTO INICIAL DO MELOEIRO   MARIA ÂNGELA CASIMIRO LOPES1; RAFAEL VITOR DA SILVEIRA MUNIZ1; SAMARA SIBELLE VIEIRA ALVES2; ALINE COSTA FERREIRA1; FRANCISCO VANIES DA SILVA SÁ3 E LUDERLÂNDIO DE ANDRADE SILVA3 1 Unidade Acadêmica de Ciências Agrárias, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brasil, [email protected], [email protected], [email protected] Unidade Acadêmica de Garanhuns, Universidade Federal Rural do Pernambuco, UFRPE, Garanhuns, PE, Brasil, [email protected] Centro de Ciências e Recursos Naturais, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brasil, [email protected], [email protected]  1 RESUMO Objetivou-se estudar a produção de mudas de meloeiro em função de diferentes substratos irrigados com água salina. O experimento foi desenvolvido em casa de vegetação no município de Pombal, Paraíba PB, no período de abril a maio de 2015. Adotou-se o delineamento experimental inteiramente casualizado, em esquema fatorial 4 x 3 x 2 constituído de quatro níveis de salinidade da água de irrigação - CEa (0,3; 1,5; 3,0 e 4,5 dS m-1) e três substratos [S1= solo; S2= solo + composto orgânico (2:1); e S3 = solo + esterco bovino (2:1)], e duas variedades de melão (V1= Melão Gaúcho Casca de Carvalho; V2= Hales Best Jumbo), com quatro repetições e três plantas úteis por repetição. As plantas foram conduzidas em recipientes com capacidade de 0,5 dm3 durante 32 dias após a semeadura, quando foram avaliadas quanto ao crescimento e acúmulo de matéria seca. O crescimento e o acúmulo de matéria seca de ambas as variedades foram reduzidos com o aumento da salinidade da água de irrigação. O crescimento e acúmulo de massa seca da variedade Hales Best Jumbo no substrato constituído de solo com composto orgânico foi menos afetado pelo estresse salino. A variedade Gaúcho Casca de Carvalho é a mais sensível ao estresse salino independente do substrato utilizado. Palavras-chave: Cucumis melo L.; estresse salino, composto orgânico.  LOPES, M. A. C.; MUNIZ, R. V. S.; ALVES, S. S. V.; FERREIRA, A. C.; SÁ, F. V. S.; ANDRADE SILVA, L. A.SALINE WATER AND SUBSTRATES ON INITIAL GROWTH IN MELON  2 ABSTRACT The aim was to study the production of melon seedlings for different substrates irrigated with saline water. The experiment was conducted in a greenhouse in the city of Pombal, Paraíba, PB, in the period April-May 2015. We adopted a completely randomized design in a factorial 4 x 3 x 2 design, consisting of four levels of irrigation water salinity (0.3, 1.5, 3.0 and 4.5 dS m-1) and three substrates [S1= ground; S2= soil + organic compound (2:1); and S3= soil + manure (2:1)] , and two varieties of melon (V1 = Gaúcho Casca de Carvalho; V2 = Hales Best Jumbo), with four replications and three plants per repetition. Plants were kept in containers with a capacity of 0.5 dm3 for 32 days after sowing, when they were evaluated for growth and accumulation of dry matter. Growth and dry matter accumulation of both varieties were reduced with increasing irrigation water salinity. The growth and accumulation of dry mass of the Hales Best Jumbo variety in the substrate composed of soil with organic compost was less affected by salt stress. The Gaúcho Casca de Carvalho variety is the most sensitive to salt stress regardless of the substrate used. Keywords: Cucumis melo L., salt stress, organic compound


Author(s):  
Nadia Chiahi ◽  
Louhichi Brinis

Wheat is an important cereal in terms of human consumption in many countries of the world. It is grown mainly in arid and semi-arid Mediterranean countries. In these areas, salinity of soils and irrigation water is one of the limiting factors in plant productivity and agricultural yield. The present work consisted in evaluating the morpho-physiological and biochemical behavior of two durum wheat varieties V1 (Gta dur), V2 (Vitron) subjected to increasing concentrations of NaCl during the germination phase and the growth phase in the laboratory. The results obtained showed several revelations in terms of morphological imbalance (leaf area, germination percentage, root length, physiological variation, decrease or increase of assimilating pigments, Relative Water Content (RWC), etc), and biochemical bioaccumulation (proline, soluble sugars, proteins and elevation of activity of CAT antioxidant enzymes). At the level of treatments, the development of the seedlings of two varieties was better on soil salty and sprinkled with water than in the presence of saline concentrations. A certain tolerance of the two genotypes was particularly marked in the Vitron variety against salt stress.


2011 ◽  
Vol 22 ◽  
pp. S136-S137
Author(s):  
Csaba Bartha ◽  
Maria Del Carmen Martinez Ballesta ◽  
Laszlo Fodorpataki ◽  
Octavian Popescu ◽  
Micaela Carvajal

2019 ◽  
Vol 20 (3) ◽  
pp. 709 ◽  
Author(s):  
Haoshuang Zhan ◽  
Xiaojun Nie ◽  
Ting Zhang ◽  
Shuang Li ◽  
Xiaoyu Wang ◽  
...  

Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress. These functions improve photosynthesis, ion homeostasis, and activate a series of downstream signals, such as hormones, nitric oxide (NO) and polyamine metabolism. Melatonin also regulates gene expression responses to salt stress. In this study, we review recent literature and summarize the regulatory roles and signaling networks involving melatonin in response to salt stress in plants. We also discuss genes and gene families involved in the melatonin-mediated salt stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document