scholarly journals Breeding Practice Improves the Mycorrhizal Responsiveness of Cotton (Gossypium spp. L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Letian Wang ◽  
Xihe Wang ◽  
Baidengsha Maimaitiaili ◽  
Arjun Kafle ◽  
Khuram Shehzad Khan ◽  
...  

Maximizing the function of indigenous arbuscular mycorrhizal (AM) fungi by choosing specific crop genotypes offers one of the few untapped opportunities to improve the sustainability of agriculture. In this study, the differences in mycorrhizal responsiveness (MR) in plant growth and shoot phosphorus (P) content among cotton (Gossypium spp. L.) genotypes from different release dates were compared and then the relationships between MR and P uptake-related traits were determined. The experimental design in a greenhouse included 24 genotypes released from 1950 to present in Xinjiang Province, inoculation with or without AM fungi, and P levels (15 and 150 mg P kg–1 added as KH2PO4). Results showed that the modern cotton genotypes exhibited a higher degree of mycorrhizal colonization, the hyphal length density (HLD), and mycorrhizae-induced changes in shoot growth than the old genotypes when inoculated with indigenous AM fungi at both the P levels. Moreover, MR was highly correlated with the HLD at low P levels and the HLD may provide useful insights for future cotton breeding aimed at delivering crop genotypes that can benefit more from AM fungi.

2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ligia Lebrón ◽  
D. Jean Lodge ◽  
Paul Bayman

Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ among cultivars. Extraradical hyphal lengths differed significantly among locations. Although the same morphotypes of mycorrhizal fungal spores were present in the rhizosphere of the three cultivars and total spore density did not differ significantly, frequencies of spore morphotypes differed significantly among cultivars. Spore morphotypes were typical of Glomus and Sclerocystis. Levels of soil nutrients did not explain differences in AM colonzation among cultivars. The cultivar Caturra is a mutant of Borbón and has apparently lost Borbón’s capacity to support and benefit from an extensive network of AM hyphae in the soil. Widespread planting of Caturra, which matures earlier and has higher yield if fertilized, may increase dependence on fertilizers.


2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


2007 ◽  
Vol 5 (24) ◽  
pp. 773-784 ◽  
Author(s):  
A Schnepf ◽  
T Roose ◽  
P Schweiger

In order to quantify the contribution of arbuscular mycorrhizal (AM) fungi to plant phosphorus nutrition, the development and extent of the external fungal mycelium and its nutrient uptake capacity are of particular importance. We develop and analyse a model of the growth of AM fungi associated with plant roots, suitable for describing mechanistically the effects of the fungi on solute uptake by plants. The model describes the development and distribution of the fungal mycelium in soil in terms of the creation and death of hyphae, tip–tip and tip–hypha anastomosis, and the nature of the root–fungus interface. It is calibrated and corroborated using published experimental data for hyphal length densities at different distances away from root surfaces. A good agreement between measured and simulated values was found for three fungal species with different morphologies: Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders; Glomus sp.; and Acaulospora laevis Gerdemann & Trappe associated with Trifolium subterraneum L. The model and findings are expected to contribute to the quantification of the role of AM fungi in plant mineral nutrition and the interpretation of different foraging strategies among fungal species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10173
Author(s):  
Luis G. Sarmiento-López ◽  
Melina López-Meyer ◽  
Gabriela Sepúlveda-Jiménez ◽  
Luis Cárdenas ◽  
Mario Rodríguez-Monroy

In plants, phosphorus (P) uptake occurs via arbuscular mycorrhizal (AM) symbiosis and through plant roots. The phosphate concentration is known to affect colonization by AM fungi, and the effect depends on the plant species. Stevia rebaudiana plants are valuable sources of sweetener compounds called steviol glycosides (SGs), and the principal components of SGs are stevioside and rebaudioside A. However, a detailed analysis describing the effect of the phosphate concentration on the colonization of AM fungi in the roots and the relationship of these factors to the accumulation of SGs and photochemical performance has not been performed; such an analysis was the aim of this study. The results indicated that low phosphate concentrations (20 and 200 µM KH2PO4) induced a high percentage of colonization by Rhizophagus irregularis in the roots of S. rebaudiana, while high phosphate concentrations (500 and 1,000 µM KH2PO4) reduced colonization. The morphology of the colonization structure is a typical Arum-type mycorrhiza, and a mycorrhiza-specific phosphate transporter was identified. Colonization with low phosphate concentrations improved plant growth, chlorophyll and carotenoid concentration, and photochemical performance. The transcription of the genes that encode kaurene oxidase and glucosyltransferase (UGT74G1) was upregulated in colonized plants at 200 µM KH2PO4, which was consistent with the observed patterns of stevioside accumulation. In contrast, at 200 µM KH2PO4, the transcription of UGT76G1 and the accumulation of rebaudioside A were higher in noncolonized plants than in colonized plants. These results indicate that a low phosphate concentration improves mycorrhizal colonization and modulates the stevioside and rebaudioside A concentration by regulating the transcription of the genes that encode kaurene oxidase and glucosyltransferases, which are involved in stevioside and rebaudioside A synthesis in S. rebaudiana.


1998 ◽  
Vol 131 (1) ◽  
pp. 79-85 ◽  
Author(s):  
O. FAGBOLA ◽  
O. OSONUBI ◽  
K. MULONGOY

A field trial on alley-cropping was conducted at the University of Ibadan research farm in the 1990/91 cropping season to assess the contributions of arbuscular mycorrhizal (AM) fungi and hedgerow woody legumes to the yield and nutrient uptake of cassava (Manihot esculenta Crantz) as an intercrop in an infertile soil. The trial also investigated the influence of AM fungi on the interplanting of a non-nodulating woody legume Senna siamea (syn. Cassia siamea) with a nodulating woody legume (Leucaena leucocephala).AM contributions to cassava were greater than the hedgerow contributions, which demonstrated that AM associations are an essential component in the nutrition of cassava. In contrast to cassava, AM inoculation only influenced the leaf dry weight and uptake of nutrients of non-interplanted woody legumes but not the above-ground biomass and P uptake of interplanted woody legumes. However, non-inoculated interplanted Leucaena benefited more from indigenous AM fungi than the competing Senna. The negative contributions to the nutrient uptake (K, Ca and Mg) of cassava by hedgerows and the lack of response to AM inoculation in interplanted hedgerow woody legumes could be attributed to root competition among the different plant species growing in close proximity to each other. The present results show that cassava benefits more from AM association than Leucaena which in turn benefits more than Senna in an alley-cropping system.


2013 ◽  
Vol 79 (21) ◽  
pp. 6719-6729 ◽  
Author(s):  
Mulan Dai ◽  
Luke D. Bainard ◽  
Chantal Hamel ◽  
Yantai Gan ◽  
Derek Lynch

ABSTRACTThe influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity.


Botany ◽  
2011 ◽  
Vol 89 (4) ◽  
pp. 227-234 ◽  
Author(s):  
Jesse Harnden ◽  
Andrew S. MacDougall ◽  
Benjamin A. Sikes

Allelopathic phytochemicals have been linked to invasion success, but their role in the invasion process remains unclear. Toxicity effects demonstrated with lab bioassays may be neutralized in soils, and their role in population expansion can be intertwined with nonallelopathic processes that also influence dispersal and establishment. Here, we use greenhouse experiments to test the soil-based impacts of invasive fine fescue ( Festuca rubra L.) on recruitment in tallgrass prairie. Fescue roots release the growth inhibitor m-tyrosine. Using root washes and fescue-conditioned soils to mimic field potency, we determined allelopathic impacts on recruitment, including intraspecific limitation. We also tested whether nonallelopathic factors (propagule pressure, disturbance, and fertility) influence invasion into constructed fescue and prairie mesocosms, and whether root washes inhibit arbuscular mycorrhizal (AM) fungi. We observed significant negative effects of fescue soils and root washes on germination and seedling survival, including on fescue itself. Mesocosm invasion, however, was determined more by nonallelopathic mechanisms (propagule pressure and rapid growth). In prairie mesocosms, fescue invasion was higher than its own understory, with no effects of disturbance or fertility. Tallgrass species had difficulty establishing in all environments, regardless of propagule pressure. Impacts on AM fungal hyphal length and spore production were insignificant. Our results suggest that nonallelopathic traits may be sufficient to explain fescue invasion, with allelopathy likely emerging as a final "coup de grâce" for recruiting native grasses once dominance has been attained. Allelopathic species, including fine fescue, may thus not necessarily be invasive unless nonallelopathic traits facilitate establishment prior to the accumulation of soil-based toxins.


2016 ◽  
Vol 70 (2) ◽  
Author(s):  
Happy WIDIASTUTI ◽  
Edi GUHARDJA ◽  
Nampiah SOEKARNO ◽  
L K DARUSMAN ◽  
Didiek Hadjar GOENADI ◽  
...  

SummaryAM fungal symbiosis increase the uptake of P in oil palm seedlings. However the optimum condition of symbiosis has to be determined to get higher benefit of AM fungal symbiosis. Optimization of the symbiosis Acaulospora tuberculata and Gigaspora margarita with oil palm seedling in acid soil was determined. An experiment was conducted in polybag sized 40 x 60 cm contained sterilized Cikopomayak soil. Three factors studied were AM fungal species (A. tuberculata, G. margarita), inoculant dose (0.0; 12.5; 25.0; and 37.5% w/w), and fertilizer rate (0; 25; 50; and 100% recommended dose) and each treatment replicated three times. The result showed that optimum growth reached on the inoculant addition of 36% (w/w) in the form of infected roots, hypha, and spores and fertilizer dose of 25% for A. tuberculata, while for G. margarita was 40% (w/w) inoculant and 26% fertilizer. Efectivity of fertilizer and P uptake of oil palm seedling were significantly increased with AM fungi inoculation. P uptake of oil palm seedling inoculated with A. tuberculata increase. RingkasanSimbiosis cendawan mikoriza arbuskula (CMA) dapat meningkatkan serapan P pada pembibitan kelapa sawit. Namun, untuk mendapatkan keuntungan simbiosis yang tinggi perlu diketahui kondisi optimum simbiosis. Simbiosis CMA dengan tanaman sangat dipengaruhi tingkat hara dan dosis inokulum. Percobaan dilakukan dalam polibag berukuran 40 x 60 cm berisi tanah Cikopomayak steril. Tiga faktor yang diuji ialah spesies CMA (A. tuberculata, G. margarita), dosis inokulum campuran (0,0; 12,5; 25,0; dan 37,5% b/b), dosis pupuk (0; 25; 50; dan 100% dosis rekomendasi) dan masing masing perlakuan diulang tiga kali. Hasil percobaan menunjukkan bahwa pertumbuhan optimum dicapai pada pemberian inokulum berupa akar terinfeksi, hifa, dan spora 36% (b/b) dan pupuk 25% untuk A. tuberculata, sedangkan untuk G. margarita ialah 40% (b/b) inokulum dan pupuk 26%. Keefektifan pupuk dan serapan P meningkat secara nyata dengan inokulasi CMA


Web Ecology ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 77-86 ◽  
Author(s):  
K. J. Cloete ◽  
A. J. Valentine ◽  
L. M. Blomerus ◽  
A. Botha ◽  
M. A. Pèrez-Fernández

Abstract. Relatively little is currently known about the seedling physiology of arbuscular mycorrhizal (AM) Agathosma betulina, a sclerophyllous crop plant cultivated for its high-value essential oils and food additives. In addition, virtually nothing is known about the AM associations of this plant. Consequently, the effect of an indigenous community of AM fungi on P nutrition and C economy in seedlings, grown in nursery conditions, was determined during different stages of host and AM fungal establishment. AM fungal ribosomal gene sequence analyses were used to identify some of the fungi within the roots, responsible for the nutritional changes. During the early stages of host and AM fungal establishment (0 to 77 days after germination), host growth was reduced, whereas the rate of P-uptake and growth respiration was increased. Beyond 77 days of growth, the rate of P-uptake and growth respiration declined. These findings, together with results obtained after molecular analyses of root associated fungal DNA, indicate that AM fungi belonging to the genera Acaulospora and Glomus, improve P-uptake and costs of utilization during the early stages of seedling establishment in a nutrient-poor soil.


Sign in / Sign up

Export Citation Format

Share Document