scholarly journals Field-based effects of allelopathy in invaded tallgrass prairie

Botany ◽  
2011 ◽  
Vol 89 (4) ◽  
pp. 227-234 ◽  
Author(s):  
Jesse Harnden ◽  
Andrew S. MacDougall ◽  
Benjamin A. Sikes

Allelopathic phytochemicals have been linked to invasion success, but their role in the invasion process remains unclear. Toxicity effects demonstrated with lab bioassays may be neutralized in soils, and their role in population expansion can be intertwined with nonallelopathic processes that also influence dispersal and establishment. Here, we use greenhouse experiments to test the soil-based impacts of invasive fine fescue ( Festuca rubra L.) on recruitment in tallgrass prairie. Fescue roots release the growth inhibitor m-tyrosine. Using root washes and fescue-conditioned soils to mimic field potency, we determined allelopathic impacts on recruitment, including intraspecific limitation. We also tested whether nonallelopathic factors (propagule pressure, disturbance, and fertility) influence invasion into constructed fescue and prairie mesocosms, and whether root washes inhibit arbuscular mycorrhizal (AM) fungi. We observed significant negative effects of fescue soils and root washes on germination and seedling survival, including on fescue itself. Mesocosm invasion, however, was determined more by nonallelopathic mechanisms (propagule pressure and rapid growth). In prairie mesocosms, fescue invasion was higher than its own understory, with no effects of disturbance or fertility. Tallgrass species had difficulty establishing in all environments, regardless of propagule pressure. Impacts on AM fungal hyphal length and spore production were insignificant. Our results suggest that nonallelopathic traits may be sufficient to explain fescue invasion, with allelopathy likely emerging as a final "coup de grâce" for recruiting native grasses once dominance has been attained. Allelopathic species, including fine fescue, may thus not necessarily be invasive unless nonallelopathic traits facilitate establishment prior to the accumulation of soil-based toxins.

1998 ◽  
Vol 76 (11) ◽  
pp. 1947-1954 ◽  
Author(s):  
M R Smith ◽  
I Charvat ◽  
R L Jacobson

The effect that arbuscular mycorrhizal (AM) inoculum has on the development of an early successional tallgrass prairie restoration was investigated in field plots of a recently disturbed area in Minnesota, U.S.A. Mycorrhizal inoculum reproduced from a native prairie was placed below a mix of prairie seed. Two sets of control plots were established, those with seed only and those with seed and a sterilized soil. By the end of 15 months, plants in the inoculated plots had a significantly greater percentage of roots colonized by AM fungi. While inoculation had no effect on total percent cover of plants, percent cover of native planted grasses was significantly greater in the inoculated plots than in the two sets of controls. The increase in percent cover of native grasses may increase the rate of succession by allowing these grasses to outcompete the ruderal species also present at the site. Our findings suggest that inoculation with arbuscular mycorrhizae promotes the development of early successional tallgrass prairie communities.Key words: mycorrhizae, prairie, reclamation, plant community, inoculation, restoration.


2007 ◽  
Vol 5 (24) ◽  
pp. 773-784 ◽  
Author(s):  
A Schnepf ◽  
T Roose ◽  
P Schweiger

In order to quantify the contribution of arbuscular mycorrhizal (AM) fungi to plant phosphorus nutrition, the development and extent of the external fungal mycelium and its nutrient uptake capacity are of particular importance. We develop and analyse a model of the growth of AM fungi associated with plant roots, suitable for describing mechanistically the effects of the fungi on solute uptake by plants. The model describes the development and distribution of the fungal mycelium in soil in terms of the creation and death of hyphae, tip–tip and tip–hypha anastomosis, and the nature of the root–fungus interface. It is calibrated and corroborated using published experimental data for hyphal length densities at different distances away from root surfaces. A good agreement between measured and simulated values was found for three fungal species with different morphologies: Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders; Glomus sp.; and Acaulospora laevis Gerdemann & Trappe associated with Trifolium subterraneum L. The model and findings are expected to contribute to the quantification of the role of AM fungi in plant mineral nutrition and the interpretation of different foraging strategies among fungal species.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ligia Lebrón ◽  
D. Jean Lodge ◽  
Paul Bayman

Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ among cultivars. Extraradical hyphal lengths differed significantly among locations. Although the same morphotypes of mycorrhizal fungal spores were present in the rhizosphere of the three cultivars and total spore density did not differ significantly, frequencies of spore morphotypes differed significantly among cultivars. Spore morphotypes were typical of Glomus and Sclerocystis. Levels of soil nutrients did not explain differences in AM colonzation among cultivars. The cultivar Caturra is a mutant of Borbón and has apparently lost Borbón’s capacity to support and benefit from an extensive network of AM hyphae in the soil. Widespread planting of Caturra, which matures earlier and has higher yield if fertilized, may increase dependence on fertilizers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liyuan Hou ◽  
Xiaofei Zhang ◽  
Gu Feng ◽  
Zheng Li ◽  
Yubin Zhang ◽  
...  

AbstractArbuscular mycorrhizal (AM) symbioses are an attractive means of improving the efficiency of soil phosphorus (P) that difficult to be used by plants and may provide a sustainable way of maintaining high yields while reducing P applications. However, quantifying the contribution of indigenous AM fungi on phosphorus uptake and yields of maize (Zea mays L.) under field conditions is not particularly clear. Mesh-barrier compartments were applied to monitor the distribution of hyphal P uptake throughout the experimental period under different planting densities and soil depths, over two consecutive years. AM symbioses enhanced plant P-acquisition efficiency, especially during the silking stage, and hyphae of AM fungi was assessed to contribution 19.4% at most to total available P content of soil. Moreover, the pattern of AM depletion of soil P generally matched shoot nutrient demand under the high planting density, which resulted in significantly increased yield in 2014. Although the hyphal length density was significantly decreased with soil depth, AM fungi still had high potential for P supply in deeper soil. It demonstrates the great potential of indigenous AM fungi to maize productivity in the high-yield area of China, and it would further provide the possibility of elimination P fertilizer applications to maintain high yields.


2018 ◽  
Vol 66 (4) ◽  
Author(s):  
Manju Gupta ◽  
Akshat Gupta ◽  
Prabhat Kumar

Increasing urbanisation is widely associated with decline in biodiversity of all forms. The aim of the present study was to answer two questions: (i) Does rapid urbanization in Delhi (India) affect biodiversity of arbuscular mycorrhizal (AM) fungi? (ii) If so, how? We measured the AM fungal diversity at nine sites located in Delhi forests, which had different types of urban usage in terms of heavy vehicular traffic pollution, littering, defecation and recreational activities. The study revealed a significant decrease in AM fungal diversity (alpha diversity) and abundance measured as spore density, biovolume, mean infection percentage (MIP) in roots, soil hyphal length and easily extractable glomalin related soluble proteins (EE-GRSP) at polluted sites. Non-metric multidimensional scaling (NMDS) and nested PERMANOVA, revealed significant differences in AM fungal community structure which could be correlated with variations in soil moisture, temperature, pH, carbon, and nitrogen and phosphorus levels. BEST (biota and environmental matching) analysis of biological and environmental samples revealed that soil temperature and moisture accounted for 47.6 % of the total variations in the samples. The study demonstrated how different forms of human activities in urban ecosystems of Delhi are detrimental to the diversity and abundance of AM fungi.


SURG Journal ◽  
1969 ◽  
Vol 2 (2) ◽  
pp. 11-17
Author(s):  
Jesse Harnden

Disturbance, nutrients, propagule pressure, and the presence of arbuscular mycorrhizal fungi (AMF) have been shown to influence invasion in plant communities, although the relative importance of each remains unclear. A remnant of tallgrass prairie outside Cambridge, ON appears to be resilient to invasion by Festuca rubra, despite its herbicidal properties. A greenhouse experiment was conducted to determine what factors are responsible for the resilience of the native grassland, using synthesized fescue and native sod. The effects of disturbance, nutrient enrichment, propagule pressure, and the presence of AMF and phytotoxin on the establishment ability of F. rubra and the native species Sorghastrum nutans were examined. Propagule pressure was the only factor shown to influence fescue invasion and establishment of S. nutans was unaffected by all factors. These results suggest that the resilience of the native grassland may be due to decreased seed production or viability of F. rubra and not any characteristics of the grassland. Also, the restoration of native grasslands will not be limited by remnants of phytotoxin in the soil, following removal of exotic species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Letian Wang ◽  
Xihe Wang ◽  
Baidengsha Maimaitiaili ◽  
Arjun Kafle ◽  
Khuram Shehzad Khan ◽  
...  

Maximizing the function of indigenous arbuscular mycorrhizal (AM) fungi by choosing specific crop genotypes offers one of the few untapped opportunities to improve the sustainability of agriculture. In this study, the differences in mycorrhizal responsiveness (MR) in plant growth and shoot phosphorus (P) content among cotton (Gossypium spp. L.) genotypes from different release dates were compared and then the relationships between MR and P uptake-related traits were determined. The experimental design in a greenhouse included 24 genotypes released from 1950 to present in Xinjiang Province, inoculation with or without AM fungi, and P levels (15 and 150 mg P kg–1 added as KH2PO4). Results showed that the modern cotton genotypes exhibited a higher degree of mycorrhizal colonization, the hyphal length density (HLD), and mycorrhizae-induced changes in shoot growth than the old genotypes when inoculated with indigenous AM fungi at both the P levels. Moreover, MR was highly correlated with the HLD at low P levels and the HLD may provide useful insights for future cotton breeding aimed at delivering crop genotypes that can benefit more from AM fungi.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


Sign in / Sign up

Export Citation Format

Share Document