scholarly journals Selenium Supplementation and Crop Plant Tolerance to Metal/Metalloid Toxicity

2022 ◽  
Vol 12 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
Kamrun Nahar ◽  
Pedro García-Caparrós ◽  
Khursheda Parvin ◽  
Faisal Zulfiqar ◽  
...  

Selenium (Se) supplementation can restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element essential for the functioning of the human physiology and is a beneficial element for plants. Low concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various ways. Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the outcome of improvement of various physiological features. Photosynthesis has been improved by Se supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained enzymatic activity, improved stomatal function, and photosystem activity. By modulating the antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of plants. However, excessive concentration of Se exerts toxic effects on plants. This review presents the role of Se for improving plant tolerance to metal/metalloid stress.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1283
Author(s):  
Vasileios Ziogas ◽  
Georgia Tanou ◽  
Giasemi Morianou ◽  
Nektarios Kourgialas

Among the various abiotic stresses, drought is the major factor limiting crop productivity worldwide. Citrus has been recognized as a fruit tree crop group of great importance to the global agricultural sector since there are 140 citrus-producing countries worldwide. The majority of citrus-producing areas are subjected to dry and hot summer weather, limited availability of water resources with parallel low-quality irrigation water due to increased salinity regimes. Citrus trees are generally classified as “salt-intolerant” with high water needs, especially during summer. Water scarcity negatively affects plant growth and impairs cell metabolism, affecting the overall tree growth and the quality of produced fruit. Key factors that overall attempt to sustain and withstand the negative effect of salinity and drought stress are the extensive use of rootstocks in citriculture as well as the appropriate agronomical and irrigation practices applied. This review paper emphasizes and summarizes the crucial role of the above factors in the sustainability of citriculture.


1990 ◽  
Vol 70 (4) ◽  
pp. 555-564 ◽  
Author(s):  
SUZANNE BEAUCHEMIN ◽  
MARC R. LAVERDIÈRE ◽  
ADRIEN N'DAYEGAMIYE

Intensive potato cropping has been reported as a major cause of degradation of sandy soils. Wood residues from tree clipping applied to soils can substitute for crop residues to maintain adequate organic matter levels and crop productivity. However, this ligneous material presents a C:N ratio varying from 50 to 175 and, when applied in large quantities, may induce N immobilization at the expense of the crop. The objectives of this study were to quantify the importance of this N immobilization following addition of residues and its effect on yield and quality of potato crops. Fresh or humified residues (50 t ha−1) were applied to the soil and incorporated. The third treatment received no residue. Each treatment was subdivided into subtreatments which received either 0, 150, 200 or 250 kg N ha−1. P, K, Mg and S were applied at the same rate on all treatments. Following the application of wood residues in 1987, 46 kg N ha−1 were immobilized in amended plots. N recovery from fertilizer was 51%. To obtain comparable yields of similar quality to those measured on unamended plots, an additional 1.9 kg N t−1 residues added or 100 kg N ha−1 were required. In 1988, N immobilization was considerably reduced; yield and quality of potato tubers in plots that received wood residues the previous year were comparable to those of the unamended plots with appropriate fertilization. Water retention was significantly improved in plots that received wood residues. Partial decomposition of the residues for 1 yr prior to application on the soil did not significantly improve plant growth compared to fresh residues. Key words: Wood residues, tree clippings, potato yield, dry matter content, nitrogen immobilization, soil water content


2021 ◽  
pp. 41-64
Author(s):  
Priyanka Verma* ◽  
Dheer Singh ◽  
Ishwar Prasad Pathania ◽  
Komal Aggarwal

2016 ◽  
Vol 11 (4) ◽  
pp. 246 ◽  
Author(s):  
Semra Kilic ◽  
Hatice Tuğba Aca

Soil salinity is a serious threat to agricultural ecological environment and agriculture sustainability. Ever increasing salinity negatively affects processes such as plant growth and development, ultimately causing diminished economic yield and quality of production, and it might cause a worldwide famine in the future. Thus, helping plants adapt to saline soils and increasing their yield and quality is a must. Our study focused on the enhancing role of exogenously applied folic acid (FA) in mitigation of toxicity caused by salt (NaCl). Barley seeds were pre-treated with 50 <span>µ</span>M FA for 24 h and then exposed to salt. Morphological and anatomical changes in seed germination and seedling growth stages were compared between different treatments of salt in laboratory conditions. Adverse effects of salt in both germination and seedling growth stages depended on the concentration of salt treatment (0.0, 0.25, 0.275, 0.30, 0.325 and 0.35 M). It was shown that the application of FA effectively alleviated the salt-induced inhibition, and reduced the negative effects of salt on germination (germination index and vigour index), seedling growth (radicle and coleoptile lengths, fresh weight) and leaf (stomata and epidermis number, stomatal index, stomata sizes of adaxial and abaxial surfaces) parameters. Moreover, FA elevated all examined parameters of barley also under non-stress conditions. Especially, germination and vigour indices were significantly higher than the control. Our results suggest that exogenous FA is involved in the resistance of barley to salt-stress.


2018 ◽  
Vol 61 (2) ◽  
pp. 147-168 ◽  
Author(s):  
D. O. Caldiz ◽  
P. G. Viani ◽  
C. M. Giletto ◽  
E. C. Zamuner ◽  
H. E. Echeverría

2020 ◽  
Vol 01 (03) ◽  
Author(s):  
Osama A. Nofal ◽  
Abdelhalim I Rezk ◽  
Mahmoud M. Abbas
Keyword(s):  

1984 ◽  
Vol 102 (1) ◽  
pp. 253-255
Author(s):  
B. Singh ◽  
B. S. Badhoria

Green gram is one of the most important kharif pulse crops of India. It is of short duration, can fit well in crop rotation and, therefore, can be grown throughout the year. Information has been accumulating concerning the role of potassium and zinc in cereal crops but very little information is available regarding the nutrition of potassium and its interaction with zinc on the yield and quality of pulses. However, Malewar, Budhewar & Jadhav (1980) and Ghildiyal, Saini & Sirohi (1975) have reported significant positive effect of zinc treatment on growth attributes in green gram. The present investigations were, therefore, planned to study individual and interaction effects of potassium and zinc on growth, dry-matter and grain yield and quality of green gram.


2005 ◽  
pp. 134-138
Author(s):  
Kinga Diána Ungai ◽  
Zoltán Győri

Producing sugar beet, as it is a demanding field crop, has contributed to the raising standard of plant production. It has an outstanding place among the plants that are cultivated in the intensive plant production system. Rentability of sugar manufacture is determined by the stability of yield and the quality (saccharose content) of sugar beet. In this way, the fundamental interest both of the producers and the processing industry is high yield and quality, year by year. The yield and the quality of the sugar beet are mainly determined by the plant production system, so we studied the effect of fertilization, irrigation and plant protection.


Sign in / Sign up

Export Citation Format

Share Document