scholarly journals Obesity Accelerates Age-Associated Defects in Human B Cells Through a Metabolic Reprogramming Induced by the Fatty Acid Palmitate

2022 ◽  
Vol 2 ◽  
Author(s):  
Daniela Frasca ◽  
Maria Romero ◽  
Denisse Garcia ◽  
Alain Diaz ◽  
Bonnie B. Blomberg

We have measured the secretion of autoimmune antibodies in plasma samples and in culture supernatants of blood-derived B cells from four groups of individuals: young lean (YL), elderly lean (EL), young obese (YO) and elderly obese (EO). We found secretion comparable in YO and EL individuals, suggesting that obesity accelerates age-associated defects in circulating B cells. To define at least one possible molecular pathway involved, we used an in vitro model in which B cells from YL and EL individuals have been stimulated with the Fatty Acid (FA) palmitate, the most common saturated FA in the human body. The rationale to use palmitate is that there is a chronic increase in circulating levels of palmitate, due to increased spontaneous lipolysis occurring during aging and obesity, and this may induce autoimmune B cells. Results herein show that in vitro incubation of B cells from YL and EL individuals with the FA palmitate induces mRNA expression of T-bet, the transcription factor for autoimmune antibodies, as well as secretion of autoimmune IgG antibodies, with B cells from YL individuals looking similar to B cells from EL individuals, confirming our initial hypothesis. The generation of autoimmune B cells in the presence of the FA palmitate was found to be associated with a metabolic reprogramming of B cells from both YL and EL individuals. These results altogether show the critical role of the FA palmitate in inducing human B cell immunosenescence and show for the first time the importance of metabolic pathways in this process.

2001 ◽  
Vol 276 (15) ◽  
pp. 11759-11765 ◽  
Author(s):  
Adrian M. Stütz ◽  
Jutta Hoeck ◽  
Francois Natt ◽  
Bernard Cuenoud ◽  
Maximilian Woisetschläger

Elevated levels of IgE are intimately associated with a number of allergic diseases, such as allergic rhinitis or asthma. Therefore, prevention of IgE production in human B-cells represents an attractive therapeutic target. IL-4-induced IgE germline gene transcription represents a crucial early step during IgE isotype switch differentiation. Gene induction is orchestrated by the coordinated action of the transcription factors STAT6 (signal transducer and activator of transcription), NF-κB, PU.1, and C/EBP. This study shows that 2′-aminoethoxy-modified oligonucleotides, which partially overlap with the STAT6 and the adjacent PU.1/NF-κB binding site, inhibit DNA binding of all three proteins with high affinity in a dose- and time-dependent fashionin vitro. Loss of protein binding correlated strongly with increasing DNA triplex formation. Importantly, the oligomers also effectively displaced pre-bound recombinant NF-κB p50 from double-stranded DNAin vitro. Functionally, the oligonucleotides led to a selective inhibition of IL-4-induced reporter gene activity from a construct driven by the IgE germline gene promoter in human B-cells. These data confirm the critical role of this cytokine-responsive regulatory region in IgE germline gene induction and further support the concept of specific modulation of gene expression by DNA triplex formation induced with chemically modified oligonucleotides.


2021 ◽  
Vol 118 (7) ◽  
pp. e2021342118
Author(s):  
Kathrin Kläsener ◽  
Julia Jellusova ◽  
Geoffroy Andrieux ◽  
Ulrich Salzer ◽  
Chiara Böhler ◽  
...  

CD20 is a B cell-specific membrane protein and represents an attractive target for therapeutic antibodies. Despite widespread usage of anti-CD20 antibodies for B cell depletion therapies, the biological function of their target remains unclear. Here, we demonstrate that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. CRISPR/Cas9-mediated ablation of CD20 in resting B cells resulted in relocalization and interaction of the IgM-class B cell antigen receptor with the coreceptor CD19. This receptor rearrangement led to a transient activation of B cells, accompanied by the internalization of many B cell surface marker proteins. Reexpression of CD20 restored the expression of the B cell surface proteins and the resting state of Ramos B cells. Similarly, treatment of Ramos or naive human B cells with the anti-CD20 antibody rituximab induced nanoscale receptor rearrangements and transient B cell activation in vitro and in vivo. A departure from the resting B cell state followed by the loss of B cell identity of CD20-deficient Ramos B cells was accompanied by a PAX5 to BLIMP-1 transcriptional switch, metabolic reprogramming toward oxidative phosphorylation, and a shift toward plasma cell development. Thus, anti-CD20 engagement or the loss of CD20 disrupts membrane organization, profoundly altering the fate of human B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Hanyue Chang ◽  
Qiaoshi Xu ◽  
Jiayi Li ◽  
Mingyu Li ◽  
Zhiyuan Zhang ◽  
...  

AbstractPyruvate kinase M2 as a key rate-limiting enzyme in glycolysis, it plays a critical role in metabolic reprogramming and carcinogenesis. However, whether PKM2 can promote immunosuppressive microenvironment formation remains unknown in head and neck squamous cell carcinoma (HNSCC). PKM2 expression was detected using immunohistochemical staining. The biological functions of PKM2 were investigated in vitro and in vivo. Lactate production and the expression of Galectin-9, a critical immunosuppression molecule, were detected after PKM2 knockdown and overexpression in HNSCC cells. The mechanism of lactate regulating Galectin-9 expression through NF-κB signaling was explored in vitro. Overexpression of PKM2 correlates with poor prognosis in HNSCC patients. Silencing PKM2 markedly inhibits proliferation and metastasis capacity in vivo and in vitro, and vice versa. The glycolysis and glycolytic capacity are significantly decreased after PKM2 silencing. Lactate secretion induced by PKM2 significantly promotes migration and invasion capacity. Furthermore, a positive correlation between PKM2 and Galectin-9 expression is observed in HNSCC tissues. The induction of Galectin-9 expression by PKM2 can be affected by a lactate transporter inhibitor. Mechanically, lactate impeded the suppressive transcriptional complex formation of NF-κB and histone deacetylase 3 (HDAC3), which released the transcription of Galectin-9 mediated by NF-κB signaling. Our findings demonstrate that lactate produced by PKM2 upregulation promotes tumor progression and Galectin-9-mediated immunosuppression via NF-κB signaling inhibition in HNSCC, which bridges metabolism and immunosuppression. The novel PKM2-lactate-Galectin-9 axis might be a potential therapeutic target in HNSCC.


2021 ◽  
Author(s):  
Rory P. Cunningham ◽  
Mary P. Moore ◽  
Ryan J. Daskek ◽  
Grace M. Meers ◽  
Takamune Takahashi ◽  
...  

Regulation of endothelial nitric oxide synthase (eNOS) in hepatocytes may be an important target in nonalcoholic fatty liver disease (NAFLD) development and progression to steatohepatitis (NASH). In this study, we show genetic deletion and viral knockdown of hepatocyte-specific eNOS exacerbated hepatic steatosis and inflammation, decreased hepatic mitochondrial fatty acid oxidation and respiration, increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission, and impaired the hepatic mitophagic (BNIP3 and LC3II) response. Conversely, overexpressing eNOS in hepatocytes in vitro and in vivo increased hepatocyte mitochondrial respiration and attenuated western diet induced NASH. Moreover, patients with elevated NAFLD activity score (histology score of worsening steatosis, hepatocyte ballooning, and inflammation) exhibited reduced hepatic eNOS expression which correlated with reduced hepatic mitochondrial fatty acid oxidation and lower hepatic protein expression of mitophagy protein BNIP3. The current study reveals an important molecular role for hepatocyte-specific eNOS as a key regulator of NAFLD/NASH susceptibility and mitochondrial quality control with direct clinical correlation to patients with NASH.


2021 ◽  
Author(s):  
Leena Sapra ◽  
Asha Bhardwaj ◽  
Pradyumna K. Mishra ◽  
Bhupendra K. Verma ◽  
Rupesh K. Srivastava

AbstractIncreasing evidences in recent years have suggested that regulatory B cells (Bregs) are crucial modulator in various inflammatory disease conditions. However, the role of Bregs in case of postmenopausal osteoporosis remains unknown. Also, no study till date have ever investigated the significance of Bregs in modulating osteoclastogenesis. In the present study, we for the first time examined the anti-osteoclastogenic potential of Bregs under in vitro conditions and we observed that Bregs suppressed RANKL mediated osteoclastogenesis in bone marrow cells in a dose dependent manner. We further elucidated the mechanism behind the suppression of osteoclasts differentiation by Bregs and found that Bregs inhibit osteoclastogenesis via IL-10 production. To further confirm the bone health modulating potential of Bregs we employed post-menopausal osteoporotic mice model. Remarkably, our in vivo data clearly suggest a significant reduction (p < 0.01) in both CD19+IL-10+ and CD19+CD1dhiCD5+IL-10+ B10 Bregs in case of osteoporotic mice model. Moreover, our serum cytokine data further confirms the significant reduction of IL-10 levels in osteoporotic mice. Taken together, the present study for the first time unravels and establish the unexplored role of regulatory B cells in case of osteoporosis and provide new insight into Bregs biology in the context of post-menopausal osteoporosis.


1994 ◽  
Vol 94 (4) ◽  
pp. 1585-1596 ◽  
Author(s):  
A A Postigo ◽  
M Marazuela ◽  
F Sánchez-Madrid ◽  
M O de Landázuri
Keyword(s):  
B Cells ◽  
De Novo ◽  

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


2015 ◽  
Vol 75 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Sarah A Jones ◽  
Andrew E J Toh ◽  
Dragana Odobasic ◽  
Marie-Anne Virginie Oudin ◽  
Qiang Cheng ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids.MethodsWe conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice.ResultsReduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli.ConclusionsOur findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


2012 ◽  
Vol 78 (21) ◽  
pp. 7662-7670 ◽  
Author(s):  
Mathieu Meessen-Pinard ◽  
Ognjen Sekulovic ◽  
Louis-Charles Fortier

ABSTRACTProphages contribute to the evolution and virulence of most bacterial pathogens, but their role inClostridium difficileis unclear. Here we describe the isolation of fourMyoviridaephages, ϕMMP01, ϕMMP02, ϕMMP03, and ϕMMP04, that were recovered as free viral particles in the filter-sterilized stool supernatants of patients suffering fromC. difficileinfection (CDI). Furthermore, identical prophages were found in the chromosomes ofC. difficileisolated from the corresponding fecal samples. We therefore provide, for the first time, evidence ofin vivoprophage induction during CDI. We completely sequenced the genomes of ϕMMP02 and ϕMMP04, and bioinformatics analyses did not reveal the presence of virulence factors but underlined the unique character of ϕMMP04. We also studied the mobility of ϕMMP02 and ϕMMP04 prophagesin vitro. Both prophages were spontaneously induced, with 4 to 5 log PFU/ml detected in the culture supernatants of the corresponding lysogens. When lysogens were grown in the presence of subinhibitory concentrations of ciprofloxacin, moxifloxacin, levofloxacin, or mitomycin C, the phage titers further increased, reaching 8 to 9 log PFU/ml in the case of ϕMMP04. In summary, our study highlights the extensive genetic diversity and mobility ofC. difficileprophages. Moreover, antibiotics known to represent risk factors for CDI, such as quinolones, can stimulate prophage mobilityin vitroand probablyin vivoas well, which underscores their potential impact on phage-mediated horizontal gene transfer events and the evolution ofC. difficile.


Sign in / Sign up

Export Citation Format

Share Document