scholarly journals Delivery of Healthcare Resources Using Autonomous Ground Vehicle Convoy Systems: An Overview

2021 ◽  
Vol 8 ◽  
Author(s):  
Calvin Cheung ◽  
Alireza Mohammadi ◽  
Samir Rawashdeh ◽  
Stanley Baek

Utilizing military convoys in humanitarian missions allows for increased overall performance of healthcare logistical operations. To properly gauge performance of autonomous ground convoy systems in military humanitarian operations, a proper framework for comparative performance metrics needs to be established. Past efforts in this domain have had heavy focus on narrow and specialized areas of convoy performance such as human factors, trust metrics, or string stability analysis. This article reviews available Army doctrine for manned convoy requirements toward healthcare missions and establishes a framework to compare performance of autonomous convoys, using metrics such as spacing error, separation distance, and string stability. After developing a framework of comparison for the convoy systems, this article compares the performance of two autonomous convoys with unique convoy control strategies to demonstrate the application and utility of the framework.

Author(s):  
Chun-ying Huang ◽  
Yun-chen Cheng ◽  
Guan-zhang Huang ◽  
Ching-ling Fan ◽  
Cheng-hsin Hsu

Real-time screen-sharing provides users with ubiquitous access to remote applications, such as computer games, movie players, and desktop applications (apps), anywhere and anytime. In this article, we study the performance of different screen-sharing technologies, which can be classified into native and clientless ones. The native ones dictate that users install special-purpose software, while the clientless ones directly run in web browsers. In particular, we conduct extensive experiments in three steps. First, we identify a suite of the most representative native and clientless screen-sharing technologies. Second, we propose a systematic measurement methodology for comparing screen-sharing technologies under diverse and dynamic network conditions using different performance metrics. Last, we conduct extensive experiments and perform in-depth analysis to quantify the performance gap between clientless and native screen-sharing technologies. We found that our WebRTC-based implementation achieves the best overall performance. More precisely, it consumes a maximum of 3 Mbps bandwidth while reaching a high decoding ratio and delivering good video quality. Moreover, it leads to a steadily high decoding ratio and video quality under dynamic network conditions. By presenting the very first rigorous comparisons of the native and clientless screen-sharing technologies, this article will stimulate more exciting studies on the emerging clientless screen-sharing technologies.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3143 ◽  
Author(s):  
Ignacio Acosta ◽  
Miguel Ángel Campano ◽  
Samuel Domínguez-Amarillo ◽  
Carmen Muñoz

Daylight performance metrics provide a promising approach for the design and optimization of lighting strategies in buildings and their management. Smart controls for electric lighting can reduce power consumption and promote visual comfort using different control strategies, based on affordable technologies and low building impact. The aim of this research is to assess the energy efficiency of these smart controls by means of dynamic daylight performance metrics, to determine suitable solutions based on the geometry of the architecture and the weather conditions. The analysis considers different room dimensions, with variable window size and two mean surface reflectance values. DaySim 3.1 lighting software provides the simulations for the study, determining the necessary quantification of dynamic metrics to evaluate the usefulness of the proposed smart controls and their impact on energy efficiency. The validation of dynamic metrics is carried out by monitoring a mesh of illuminance-meters in test cells throughout one year. The results showed that, for most rooms more than 3.00 m deep, smart controls achieve worthwhile energy savings and a low payback period, regardless of weather conditions and for worst-case situations. It is also concluded that dimming systems provide a higher net present value and allow the use of smaller window size than other control solutions.


2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Donald J. Docimo ◽  
Ziliang Kang ◽  
Kai A. James ◽  
Andrew G. Alleyne

Abstract This article explores the optimization of plant characteristics and controller parameters for electrified mobility. Electrification of mobile transportation systems, such as automobiles and aircraft, presents the ability to improve key performance metrics such as efficiency and cost. However, the strong bidirectional coupling between electrical and thermal dynamics within new components creates integration challenges, increasing component degradation, and reducing performance. Diminishing these issues requires novel plant designs and control strategies. The electrified mobility literature provides prior studies on plant and controller optimization, known as control co-design (CCD). A void within these studies is the lack of model predictive control (MPC), recognized to manage multi-domain dynamics for electrified systems, within CCD frameworks. This article addresses this through three contributions. First, a thermo-electromechanical hybrid electric vehicle (HEV) powertrain model is developed that is suitable for both plant optimization and MPC. Second, simultaneous plant and controller optimization is performed for this multi-domain system. Third, MPC is integrated within a CCD framework using the candidate HEV powertrain model. Results indicate that optimizing both the plant and MPC parameters simultaneously can reduce physical component sizes by over 60% and key performance metric errors by over 50%.


Author(s):  
Youssef Tliche ◽  
Atour Taghipour ◽  
Béatrice Canel-Depitre

The main objective of studying decentralized supply chains is to demonstrate that a better interfirm collaboration can lead to a better overall performance of the system. Many researchers studied a phenomenon called downstream demand inference (DDI), which presents an effective demand management strategy to deal with forecast problems. DDI allows the upstream actor to infer the demand received by the downstream one without information sharing. Recent study showed that DDI is possible with simple moving average (SMA) forecast method and was verified especially for an autoregressive AR(1) demand process. This chapter extends the strategy's results by developing mean squared error and average inventory level expressions for causal invertible ARMA(p,q) demand under DDI strategy, no information sharing (NIS), and forecast information sharing (FIS) strategies. The authors analyze the sensibility of the performance metrics in respect with lead-time, SMA, and ARMA(p,q) parameters, and compare DDI results with the NIS and FIS strategies' results.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1518
Author(s):  
Anish Gorantiwar ◽  
Rajvardhan Nalawade ◽  
Arash Nouri ◽  
Saied Taheri

An experimental study was conducted to compare the performance of an in-house built novel double semi-active damper against a conventional semi-active single damper. Different performance metrics were analyzed, and the performance of the two dampers was evaluated based on these metrics. A Hybrid Skyhook–Groundhook control algorithm was developed and implemented on the variable orifice double damper. The semi-active single damper is governed via two separate control strategies, namely—Skyhook and Groundhook control, respectively. The effectiveness of each algorithm is better understood by adding a normal load on top of the Shock Dyno, thus modifying it to act as a quarter car test rig. The sprung and unsprung acceleration data are collected via the accelerometers mounted on the Shock Dyno through a Data Acquisition System. The results obtained from this experiment provide a strong basis that the semi-active double damper performs better in terms of the comfort cost than that of the commercial semi-active single dampers.


2015 ◽  
Vol 43 ◽  
pp. 39-49
Author(s):  
Md. Ibrahim Khalil ◽  
Sabbir Ahmed

Selected Mapping (SLM) and Partial Transmit Sequence (PTS) are two very well-known Peak-to-average Power Ratio (PAPR) reduction techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems. Both these schemes show good PAPR reduction capabilities. However, for any PAPR reduction technique, the nature of spectral occupancy and the associated computational complexity also need to be taken into account when the overall performance is considered. In this paper, our goal is to perform a comparative performance analysis of SLM and PTS techniques by considering these three parameters, i.e. PAPR reduction, computational overhead and spectral compactness. For this, we at first look for the optimum values in terms of number of sequences in SLM and no. of sub-blocks in PTS. And then based on this finding, we perform performance analysis. Our finding shows that, PTS outperforms SLM when compared on the parameters mentioned above. Finally, to explore the feasibility of further improvement, we apply Walsh-Hadamard Transform to PTS scheme and show that it further reduces PAPR and improves spectral compactness.


2019 ◽  
Vol 165 (6) ◽  
pp. 436-437
Author(s):  
Michael Connolly ◽  
J Breeze

Operation RUMAN was the British government’s combined military and humanitarian operations in September 2017 to provide relief to the British Overseas Territories in the Caribbean affected by Hurricane Irma. The Ministry of Defence (MoD), in conjunction with the Department for International Development, produced a tangible effect by the delivery of healthcare and a response to a humanitarian disaster with very little time for planning. The rescue element was accomplished within days but this was followed swiftly by a recovery phase requiring a ‘whole force approach’, with additional assets from non-governmental organisations and the private sector. The aim of this article is to provide information on the role of the Defence Medical Services on behalf of the MoD, and other departmental organisations in achieving the mission of providing medical and logistical support for these British Overseas Territories.


2011 ◽  
Vol 50 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Satoru Yokoi ◽  
Yukari N. Takayabu ◽  
Kazuaki Nishii ◽  
Hisashi Nakamura ◽  
Hirokazu Endo ◽  
...  

AbstractThe overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individual models that measure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performance metrics. Two clustering methods, the K-means and the Ward methods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.


2003 ◽  
Vol 02 (04) ◽  
pp. 403-408
Author(s):  
A. Al-Zoubaidi

In this paper we propose a Regional Internet Exchange (RIX) scheme for MENA countries intra-regional traffic, compared with the existing situation for Internet service provision. The RIX architecture is proposed, implemented, and evaluated using simulation. Simultaneous comparative performance evaluation of Internet service provision for the existing and the proposed scenarios are presented. It is focused to measure utilization, message delays, access time and client perceived latencies performance metrics. The study shows that the proposed scheme results in less international bandwidth utilization and it reduces significantly the access time and most importantly it is inherently cost-effective.


Sign in / Sign up

Export Citation Format

Share Document