scholarly journals Efficient and Accurate Object 3D Selection With Eye Tracking-Based Progressive Refinement

2021 ◽  
Vol 2 ◽  
Author(s):  
Yunhan Wang ◽  
Regis Kopper

Selection by progressive refinement allows the accurate acquisition of targets with small visual sizes while keeping the required precision of the task low. Using the eyes as a means to perform 3D selections is naturally hindered by the low accuracy of eye movements. To account for this low accuracy, we propose to use the concept of progressive refinement to allow accurate 3D selection. We designed a novel eye tracking selection technique with progressive refinement–Eye-controlled Sphere-casting refined by QUAD-menu (EyeSQUAD). We propose an approximation method to stabilize the calculated point-of-regard and a space partitioning method to improve computation. We evaluated the performance of EyeSQUAD in comparison to two previous selection techniques–ray-casting and SQUAD–under different target size and distractor density conditions. Results show that EyeSQUAD outperforms previous eye tracking-based selection techniques, is more accurate and can achieve similar selection speed as ray-casting, and is less accurate and slower than SQUAD. We discuss implications of designing eye tracking-based progressive refinement interaction techniques and provide a potential solution for multimodal user interfaces with eye tracking.

Author(s):  
Robert J. K. Jacob

The problem of human-computer interaction can be viewed as two powerful information processors (human and computer) attempting to communicate with each other via a narrow-bandwidth, highly constrained interface (Tufte, 1989). To address it, we seek faster, more natural, and more convenient means for users and computers to exchange information. The user’s side is constrained by the nature of human communication organs and abilities; the computer’s is constrained only by input/output devices and interaction techniques that we can invent. Current technology has been stronger in the computer-to-user direction than the user-to-computer, hence today’s user-computer dialogues are rather one-sided, with the bandwidth from the computer to the user far greater than that from user to computer. Using eye movements as a user-to-computer communication medium can help redress this imbalance. This chapter describes the relevant characteristics of the human eye, eye-tracking technology, how to design interaction techniques that incorporate eye movements into the user-computer dialogue in a convenient and natural way, and the relationship between eye-movement interfaces and virtual environments. As with other areas of research and design in human-computer interaction, it is helpful to build on the equipment and skills humans have acquired through evolution and experience and search for ways to apply them to communicating with a computer. Direct manipulation interfaces have enjoyed great success largely because they draw on analogies to existing human skills (pointing, grabbing, moving objects in space), rather than trained behaviors. Similarly, we try to make use of natural eye movements in designing interaction techniques for the eye. Because eye movements are so different from conventional computer inputs, our overall approach in designing interaction techniques is, wherever possible, to obtain information from a user’s natural eye movements while viewing the screen, rather than requiring the user to make specific trained eye movements to actuate the system. This requires careful attention to issues of human design, as will any successful work in virtual environments. The goal is for human-computer interaction to start with studies of the characteristics of human communication channels and skills and then develop devices, interaction techniques, and interfaces that communicate effectively to and from those channels.


2020 ◽  
Author(s):  
David Harris ◽  
Mark Wilson ◽  
Tim Holmes ◽  
Toby de Burgh ◽  
Samuel James Vine

Head-mounted eye tracking has been fundamental for developing an understanding of sporting expertise, as the way in which performers sample visual information from the environment is a major determinant of successful performance. There is, however, a long running tension between the desire to study realistic, in-situ gaze behaviour and the difficulties of acquiring accurate ocular measurements in dynamic and fast-moving sporting tasks. Here, we describe how immersive technologies, such as virtual reality, offer an increasingly compelling approach for conducting eye movement research in sport. The possibility of studying gaze behaviour in representative and realistic environments, but with high levels of experimental control, could enable significant strides forward for eye tracking in sport and improve understanding of how eye movements underpin sporting skills. By providing a rationale for virtual reality as an optimal environment for eye tracking research, as well as outlining practical considerations related to hardware, software and data analysis, we hope to guide researchers and practitioners in the use of this approach.


Author(s):  
Xiaojun Bi ◽  
Andrew Howes ◽  
Per Ola Kristensson ◽  
Antti Oulasvirta ◽  
John Williamson

This chapter introduces the field of computational interaction, and explains its long tradition of research on human interaction with technology that applies to human factors engineering, cognitive modelling, artificial intelligence and machine learning, design optimization, formal methods, and control theory. It discusses how the book as a whole is part of an argument that, embedded in an iterative design process, computational interaction design has the potential to complement human strengths and provide a means to generate inspiring and elegant designs without refuting the part played by the complicated, and uncertain behaviour of humans. The chapters in this book manifest intellectual progress in the study of computational principles of interaction, demonstrated in diverse and challenging applications areas such as input methods, interaction techniques, graphical user interfaces, information retrieval, information visualization, and graphic design.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 354
Author(s):  
Jakub Berčík ◽  
Johana Paluchová ◽  
Katarína Neomániová

The appearance of food provides certain expectations regarding the harmonization of taste, delicacy, and overall quality, which subsequently affects not only the intake itself but also many other features of the behavior of customers of catering facilities. The main goal of this article is to find out what effect the visual design of food (waffles) prepared from the same ingredients and served in three different ways—a stone plate, street food style, and a white classic plate—has on the consumer’s preferences. In addition to the classic tablet assistance personal interview (TAPI) tools, biometric methods such as eye tracking and face reading were used in order to obtain unconscious feedback. During testing, air quality in the room by means of the Extech device and the influence of the visual design of food on the perception of its smell were checked. At the end of the paper, we point out the importance of using classical feedback collection techniques (TAPI) and their extension in measuring subconscious reactions based on monitoring the eye movements and facial expressions of the respondents, which provides a whole new perspective on the perception of visual design and serving food as well as more effective targeting and use of corporate resources.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


2020 ◽  
pp. 1-27
Author(s):  
Katja I. Haeuser ◽  
Shari Baum ◽  
Debra Titone

Abstract Comprehending idioms (e.g., bite the bullet) requires that people appreciate their figurative meanings while suppressing literal interpretations of the phrase. While much is known about idioms, an open question is how healthy aging and noncanonical form presentation affect idiom comprehension when the task is to read sentences silently for comprehension. Here, younger and older adults read sentences containing idioms or literal phrases, while we monitored their eye movements. Idioms were presented in a canonical or a noncanonical form (e.g., bite the iron bullet). To assess whether people integrate figurative or literal interpretations of idioms, a disambiguating region that was figuratively or literally biased followed the idiom in each sentence. During early stages of reading, older adults showed facilitation for canonical idioms, suggesting a greater sensitivity to stored idiomatic forms. During later stages of reading, older adults showed slower reading times when canonical idioms were biased toward their literal interpretation, suggesting they were more likely to interpret idioms figuratively on the first pass. In contrast, noncanonical form presentation slowed comprehension of figurative meanings comparably in younger and older participants. We conclude that idioms may be more strongly entrenched in older adults, and that noncanonical form presentation slows comprehension of figurative meanings.


2021 ◽  
Author(s):  
Federico Carbone ◽  
Philipp Ellmerer ◽  
Marcel Ritter ◽  
Sabine Spielberger ◽  
Philipp Mahlknecht ◽  
...  

2021 ◽  
Vol 20 (2) ◽  
pp. 84-96
Author(s):  
Mitja Ružojčić ◽  
Zvonimir Galić ◽  
Antun Palanović ◽  
Maja Parmač Kovačić ◽  
Andreja Bubić

Abstract. To better understand the process of responding to the Conditional Reasoning Test for Aggression (CRT-A) and its implication for the test's use in personnel selection, we conducted two lab studies in which we compared test scores and eye movements of participants responding honestly and faking the test. Study 1 results showed that, although participants might try to respond differently to the CRT-A while faking, it remains an indirect and unfakeable measure as long as the test's purpose is undisclosed. Study 2 showed that revealing the true purpose of the CRT-A diminishes the test's indirect nature so the test becomes fakeable, solving it requires less attention and participants direct their eyes more to response alternatives congruent with the presentational demands.


2021 ◽  
pp. 1-26
Author(s):  
Jan-Louis Kruger ◽  
Natalia Wisniewska ◽  
Sixin Liao

Abstract High subtitle speed undoubtedly impacts the viewer experience. However, little is known about how fast subtitles might impact the reading of individual words. This article presents new findings on the effect of subtitle speed on viewers’ reading behavior using word-based eye-tracking measures with specific attention to word skipping and rereading. In multimodal reading situations such as reading subtitles in video, rereading allows people to correct for oculomotor error or comprehension failure during linguistic processing or integrate words with elements of the image to build a situation model of the video. However, the opportunity to reread words, to read the majority of the words in the subtitle and to read subtitles to completion, is likely to be compromised when subtitles are too fast. Participants watched videos with subtitles at 12, 20, and 28 characters per second (cps) while their eye movements were recorded. It was found that comprehension declined as speed increased. Eye movement records also showed that faster subtitles resulted in more incomplete reading of subtitles. Furthermore, increased speed also caused fewer words to be reread following both horizontal eye movements (likely resulting in reduced lexical processing) and vertical eye movements (which would likely reduce higher-level comprehension and integration).


Author(s):  
Derek Brock ◽  
Deborah Hix ◽  
Lynn Dievendorf ◽  
J. Gregory Trafton

Software user interfaces that provide users with more than one device, such as a mouse and keyboard, for interactively performing tasks, are now commonplace. Concerns about how to represent individual differences in patterns of use and acquisition of skill in such interfaces led the authors to develop modifications to the standard format of the User Action Notation (UAN) that substantially augment the notation's expressive power. These extensions allow the reader of an interface specification to make meaningful comparisons between functionally equivalent interaction techniques and task performance strategies in interfaces supporting multiple input devices. Furthermore, they offer researchers a new methodology for analyzing the behavioral aspects of user interfaces. These modifications are documented and their benefits discussed.


Sign in / Sign up

Export Citation Format

Share Document