scholarly journals Quasinormal Frequencies of a Two-Dimensional Asymptotically Anti-de Sitter Black Hole of the Dilaton Gravity Theory

Author(s):  
M. I. Hernández-Velázquez ◽  
A. López-Ortega

We numerically calculate the quasinormal frequencies of the Klein-Gordon and Dirac fields propagating in a two-dimensional asymptotically anti-de Sitter black hole of the dilaton gravity theory. For the Klein-Gordon field we use the Horowitz-Hubeny method and the asymptotic iteration method for second order differential equations. For the Dirac field we first exploit the Horowitz-Hubeny method. As a second method, instead of using the asymptotic iteration method for second order differential equations, we propose to take as a basis its formulation for coupled systems of first order differential equations. For the two fields we find that the results that produce the two numerical methods are consistent. Furthermore for both fields we obtain that their quasinormal modes are stable and we compare their quasinormal frequencies to analyze whether their spectra are isospectral. Finally we discuss the main results.

1995 ◽  
Vol 10 (32) ◽  
pp. 4681-4687 ◽  
Author(s):  
HYEON-MIN JOHNG ◽  
HAK-SOO SHIN ◽  
KWANG-SUP SOH

Two-dimensional dilaton gravity coupled to a Klein-Gordon matter field with a quartic interaction term is considered. The theory has a classical solution which exhibits black hole formation by a soliton. The geometry of a black hole induced by a soliton is investigated.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450047 ◽  
Author(s):  
A. Belhaj ◽  
M. Chabab ◽  
H. El Moumni ◽  
M. B. Sedra ◽  
A. Segui

Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two-dimensional dilaton gravity with an arctangent potential background. We first derive the two-dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the anti-de Sitter and the Schwarzschild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.


2001 ◽  
Vol 16 (04n06) ◽  
pp. 171-178 ◽  
Author(s):  
MARIANO CADONI ◽  
PAOLO CARTA

We review recent progress in understanding the anti-de Sitter/conformal field theory correspondence in the context of two-dimensional (2D) dilaton gravity theory.


2008 ◽  
Vol 23 (02) ◽  
pp. 91-98 ◽  
Author(s):  
YUN SOO MYUNG ◽  
YONG-WAN KIM ◽  
YOUNG-JAI PARK

All thermodynamic quantities of the Reissner–Nordström (RN) black hole can be obtained from the dilaton and its potential of two-dimensional (2D) dilaton gravity. The dual relations of four thermodynamic laws are also established. Furthermore, the near-horizon thermodynamics of the extremal RN black hole is completely described by the Jackiw–Teitelboim theory which is obtained by perturbing around the AdS2-horizon.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


2001 ◽  
Vol 16 (11) ◽  
pp. 719-723 ◽  
Author(s):  
REN ZHAO ◽  
JUNFANG ZHANG ◽  
LICHUN ZHANG

Starting from the Klein–Gordon equation, we calculate the entropy of Schwarzschild–de Sitter black hole in non-thermal-equilibrium by using the improved brick-wall method-membrane model. When taking the proper cutoff in the obtained result, we obtain that both black hole's entropy and cosmic entropy are proportional to the areas of event horizon. We avoid the logarithmic term and stripped term in the original brick-wall method. It offers a new way of studying the entropy of the black hole in non-thermal-equilibrium.


2000 ◽  
Vol 15 (28) ◽  
pp. 1739-1747 ◽  
Author(s):  
LI XIANG ◽  
ZHAO ZHENG

We point out that the brick-wall model cannot be applied to the nonstatic black hole. In the case of a static hole, we propose a new model where the black hole entropy is attributed to the dynamical degrees of the field covering the two-dimensional membrane just outside the horizon. A cutoff different from the model of 't Hooft is necessarily introduced. It can be treated as an increase in horizon because of the space–time fluctuations. We also apply our model to the nonequilibrium and nonstatic cases, such as Schwarzschild–de Sitter and Vaidya space–times. In the nonstatic case, the entropy relies on a time-dependent cutoff.


2006 ◽  
Vol 21 (19n20) ◽  
pp. 4127-4135 ◽  
Author(s):  
T. BARAKAT

The asymptotic iteration method is used for Dirac and Klein–Gordon equations with a linear scalar potential to obtain the relativistic eigenenergies. A parameter, ς = 0, 1, is introduced in such a way that one can obtain Klein–Gordon bound states from Dirac bound states. It is shown that this method asymptotically gives accurate results for both Dirac and Klein–Gordon equations.


Author(s):  
Carlos Castro Perelman

A brief review of the essentials of Asymptotic Safety and the Renormalization Group (RG) improvement of the Schwarzschild Black Hole that removes the r = 0 singularity is presented. It is followed with a RG-improvement of the Kantowski-Sachs metric associated with a Schwarzschild black hole interior and such that there is no singularity at t = 0 due to the running Newtonian coupling G(t) (vanishing at t = 0). Two temporal horizons at t _- \simeq t_P and t_+ \simeq t_H are found. For times below the Planck scale t < t_P, and above the Hubble time t > t_H, the components of the Kantowski-Sachs metric exhibit a key sign change, so the roles of the spatial z and temporal t coordinates are exchanged, and one recovers a repulsive inflationary de Sitter-like core around z = 0, and a Schwarzschild-like metric in the exterior region z > R_H = 2G_o M. The inclusion of a running cosmological constant \Lambda (t) follows. We proceed with the study of a dilaton-gravity (scalar-tensor theory) system within the context of Weyl's geometry that permits to single out the expression for the classical potential V (\phi ) = \kappa\phi^4, instead of being introduced by hand, and find a family of metric solutions which are conformally equivalent to the (Anti) de Sitter metric. To conclude, an ansatz for the truncated effective average action of ordinary dilaton-gravity in Riemannian geometry is introduced, and a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is explored.


Sign in / Sign up

Export Citation Format

Share Document