scholarly journals Plant Microbiota Beyond Farming Practices: A Review

2021 ◽  
Vol 5 ◽  
Author(s):  
Mathieu Delitte ◽  
Simon Caulier ◽  
Claude Bragard ◽  
Nicolas Desoignies

Plants have always grown and evolved surrounded by numerous microorganisms that inhabit their environment, later termed microbiota. To enhance food production, humankind has relied on various farming practices such as irrigation, tilling, fertilization, and pest and disease management. Over the past few years, studies have highlighted the impacts of such practices, not only in terms of plant health or yields but also on the microbial communities associated with plants, which have been investigated through microbiome studies. Because some microorganisms exert beneficial traits that improve plant growth and health, understanding how to modulate microbial communities will help in developing smart farming and favor plant growth-promoting (PGP) microorganisms. With tremendous cost cuts in NGS technologies, metagenomic approaches are now affordable and have been widely used to investigate crop-associated microbiomes. Being able to engineer microbial communities in ways that benefit crop health and growth will help decrease the number of chemical inputs required. Against this background, this review explores the impacts of agricultural practices on soil- and plant-associated microbiomes, focusing on plant growth-promoting microorganisms from a metagenomic perspective.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


2021 ◽  
Author(s):  
Rafia Younas ◽  
Shiza Gul ◽  
Rehan Ahmad ◽  
Ali Raza Khan ◽  
Mumtaz Khan ◽  
...  

Global climate change is leading to a series of frequent onset of environmental stresses such as prolonged drought periods, dynamic precipitation patterns, heat stress, and cold stress on plants and commercial crops. The increasing severity of such stresses is not only making agriculture and related economic sector vulnerable but also negatively influences plant diversity patterns. The global temperature of planet Earth has risen to 1.1°C since the last 19th century. An increase in surface temperature leads to an increase in soil temperature which ultimately reduces water content in the soil, thereby, reducing crop growth and yield. Moreover, this situation is becoming more intense for agricultural practices in arid and semi-arid regions. To overcome climatically induced stresses, acclimatization of plant species via bioinoculation with Plant Growth Promoting Rhizobacteria (PGPR) is becoming an effective approach. The PGPR are capable of colonizing rhizosphere (exophytes) as well as plant organs (endophytes), where they trigger an accumulation of osmolytes for osmoregulation or improving gene expression of heat or cold stress proteins, or by signaling the synthesis of phytohormones, metabolites, proteins, and antioxidants to scavenge reactive oxygen species. Thus, PGPR exhibiting multiple plant growth-promoting traits can be employed via bioinoculants to improve the plant’s tolerance against unfavorable stress conditions.


2021 ◽  
Vol 5 ◽  
Author(s):  
Gustavo Santoyo ◽  
Elisa Gamalero ◽  
Bernard R. Glick

Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.


2021 ◽  
Author(s):  
Senga Robertson-Albertyn ◽  
Federico Concas ◽  
Lynn H Brown ◽  
Jamie N Orr ◽  
James C Abbott ◽  
...  

ABSTRACTWe generated a bacterial collection from the rhizosphere of cultivated barley (Hordeum vulgare L. ssp. vulgare) to assess taxonomic distribution of culturable members of the barley microbiota and their plant growth-promoting potential. From this we retrieved strains belonging to the dominant phyla of the plant microbiota— Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria—and gathered evidence they code for functional genes implicated in nitrogen fixation, hydrogen cyanide channels and phosphate solubilisation. Here we present an initial comparative genomic analysis of the collection revealing that plant growth-promoting potential of the culturable barley bacterial microbiota appears to have a relatively broad phylogenetic base while retaining some strain-specificity.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 529 ◽  
Author(s):  
Agnese Bellabarba ◽  
Camilla Fagorzi ◽  
George C. diCenzo ◽  
Francesco Pini ◽  
Carlo Viti ◽  
...  

Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield.


2021 ◽  
Vol 22 (6) ◽  
pp. 3154
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Shih-Hsun Hung ◽  
Eugene Huang ◽  
Chieh-Chen Huang

To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20–50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human’s increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 24-28 ◽  
Author(s):  
B Patni ◽  
A S Panwar ◽  
P Negi ◽  
Gopal Krishna Joshi

Plant growth promoting bacteria (PGPB) are well known to promote plant growth in a number of ways. It is important to study plant growth promoting potential of bacteria capable of growing in extreme environments to establish their role in promoting agricultural yield under harsh conditions. Psychrophilic or psychrotolerant bacteria with plant growth promoting traits may improve the quality of agricultural practices in hilly terrain. The agricultural importance of such microbes stems from the fact that the world over temperate agro-ecosystems are characterized by low temperatures and short growing seasons that subject both plant and microbial life to cold temperature induced stress. Hence, there is a need to identify potential microbes that retain their functional traits under low temperature conditions. Such microbes can be used to enhance the agricultural yields in low temperature areas of the world. This review describes plant growth promoting activities identified in cold adapted bacteria.


Sign in / Sign up

Export Citation Format

Share Document