scholarly journals What Are the Human Resources Required to Control a Foot-and-Mouth Disease Outbreak in Austria?

2021 ◽  
Vol 8 ◽  
Author(s):  
Tatiana Marschik ◽  
Ian Kopacka ◽  
Simon Stockreiter ◽  
Friedrich Schmoll ◽  
Jörg Hiesel ◽  
...  

Contingency planning allows veterinary authorities to prepare a rapid response in the event of a disease outbreak. A recently published foot-and-mouth disease (FMD) simulation study indicated concerns whether capacity was sufficient to control a potential FMD epidemic in Austria. The objectives of the study presented here were to estimate the human resources required to implement FMD control measures and to identify areas of the operational activities that could potentially delay successful control of the disease. The stochastic spatial simulation model EuFMDiS (The European Foot-and-Mouth Disease Spread Model) was used to simulate a potential FMD outbreak and its economic impact, including different control scenarios based on variations of culling, vaccination, and pre-emptive depopulation. In this context, the utilization of human resources was assessed based on the associated EuFMDiS output regarding the performance of operational activities. The assessments show that the number of personnel needed in an outbreak with a stamping-out policy would reach the peak at the end of the second week of control with a median of 540 (257–926) individuals, out of which 31% would be veterinarians. Approximately 58% of these human resources would be attributable to surveillance, followed by staff for cleaning and disinfection activities. Our analysis demonstrates that, of the operational activities, surveillance personnel were the largest factor influencing the magnitude of the outbreak. The aim of the assessment presented here is to assist veterinary authorities in the contingency planning of required human resources to respond effectively to an outbreak of animal diseases such as FMD.

2021 ◽  
Vol 8 ◽  
Author(s):  
Tim R. Capon ◽  
Michael G. Garner ◽  
Sorada Tapsuwan ◽  
Sharon Roche ◽  
Andrew C. Breed ◽  
...  

This study examines the potential for foot-and-mouth disease (FMD) control strategies that incorporate vaccination to manage FMD spread for a range of incursion scenarios across Australia. Stakeholder consultation was used to formulate control strategies and incursion scenarios to ensure relevance to the diverse range of Australian livestock production regions and management systems. The Australian Animal Disease Spread model (AADIS) was used to compare nine control strategies for 13 incursion scenarios, including seven control strategies incorporating vaccination. The control strategies with vaccination differed in terms of their approaches for targeting areas and species. These strategies are compared with two benchmark strategies based on stamping out only. Outbreak size and duration were compared in terms of the total number of infected premises, the duration of the control stage of an FMD outbreak, and the number of vaccinated animals. The three key findings from this analysis are as follows: (1) smaller outbreaks can be effectively managed by stamping out without vaccination, (2) the size and duration of larger outbreaks can be significantly reduced when vaccination is used, and (3) different vaccination strategies produced similar reductions in the size and duration of an outbreak, but the number of animals vaccinated varied. Under current international standards for regaining FMD-free status, vaccinated animals need to be removed from the population at the end of the outbreak to minimize trade impacts. We have shown that selective, targeted vaccination strategies could achieve effective FMD control while significantly reducing the number of animals vaccinated.


2004 ◽  
Vol 154 (19) ◽  
pp. 598-600 ◽  
Author(s):  
S.-H. Wee ◽  
J.-Y. Park ◽  
Y.-S. Joo ◽  
J.-H. Lee ◽  
S.-H. An

2020 ◽  
Vol 148 ◽  
Author(s):  
Maud Marsot ◽  
Benoit Durand ◽  
Wafa Ben Hammouda ◽  
Heni Hadj Ammar ◽  
Malek Zrelli ◽  
...  

Abstract Foot and mouth disease (FMD) is a highly contagious viral disease that affects domestic and wild artiodactyl animals and causes considerable economic losses related to outbreak management, production losses and trade impacts. In Tunisia, the last FMD outbreak took place in 2018–2019. The effectiveness of control measures implemented to control FMD depends, in particular, on the human resources used to implement them. Tunisia has the ultimate objective of obtaining OIE status as ‘FMD-free with vaccination’. The aim of this study was to determine and compare the necessary and available human resources to control FMD outbreaks in Tunisia using emergency vaccination and to assess the gaps that would play a role in the implementation of the strategy. We developed a resources-requirement grid of necessary human resources for the management of the emergency vaccination campaign launched after the identification of a FMD-infected premises in Tunisia. Field surveys, conducted in the 24 governorates of Tunisia, allowed quantifying the available human resources for several categories of skills considered in the resources-requirement grid. For each governorate, we then compared available and necessary human resources to implement vaccination according to eight scenarios mixing generalised or cattle-targeted vaccination and different levels of human resources. The resources-requirement grid included 11 tasks in three groups: management of FMD-infected premises, organisational tasks and vaccination implementation. The available human resources for vaccination-related tasks included veterinarians and technicians from the public sector and appointed private veterinarians. The comparison of available and necessary human resources showed vaccination-related tasks to be the most time-consuming in terms of managing a FMD outbreak. Increasing the available human resources using appointed private veterinarians allowed performing the emergency vaccination of animals in the governorate in due time, especially if vaccination was targeted on cattle. The overall approach was validated by comparing the predicted and observed durations of a vaccination campaign conducted under the same conditions as during the 2014 Tunisian outbreak. This study could provide support to the Tunisian Veterinary Services or to other countries to optimise the management of a FMD outbreak.


2021 ◽  
Vol 7 ◽  
Author(s):  
Tatiana Marschik ◽  
Ian Kopacka ◽  
Simon Stockreiter ◽  
Friedrich Schmoll ◽  
Jörg Hiesel ◽  
...  

An outbreak of foot-and mouth disease (FMD) in an FMD-free country such as Austria would likely have serious consequences for the national livestock sector and economy. The objective of this study was to analyse the epidemiological and economic impact of an FMD outbreak in Austria in order to (i) evaluate the effectiveness of different control measures in two Austrian regions with different livestock structure and density, (ii) analyse the associated costs of the control measures and the losses resulting from trade restrictions on livestock and livestock products and (iii) assess the resources that would be required to control the FMD outbreak. The European Foot-and-Mouth Disease Spread Model (EuFMDiS) was used to simulate a potential FMD outbreak. Based on the epidemiological outputs of the model, the economic impact of the outbreak was assessed. The analysis of the simulations showed that the success of control strategies depends largely on the type of control measures, the geographical location, the availability of sufficient resources, and the speed of intervention. The comparison of different control strategies suggested that from an economic point of view the implementation of additional control measures, such as pre-emptive depopulation of susceptible herds, would be efficient if the epidemic started in an area with high livestock density. Depending on the chosen control measures and the affected region, the majority of the total costs would be attributable to export losses (e.g., each day of an FMD epidemic costs Austria € 9–16 million). Our analysis indicated that the currently estimated resources for surveillance, cleaning, and disinfection during an FMD outbreak in Austria would be insufficient, which would lead to an extended epidemic control duration. We have shown that the control of an FMD outbreak can be improved by implementing a contingency strategy adapted to the affected region and by placing particular focus on an optimal resource allocation and rapid detection of the disease in Austria. The model results can assist veterinary authorities in planning resources and implementing cost-effective control measures for future outbreaks of highly contagious viral diseases.


2017 ◽  
Vol 49 (3) ◽  
pp. 438-466 ◽  
Author(s):  
MAN-KEUN KIM ◽  
C. MICHAEL UKKESTAD ◽  
HERNAN A. TEJEDA ◽  
DEEVON BAILEY

AbstractThis study reports the findings for an analysis using the computer program NAADSM (North American Animal Disease Spread Model) and a supply-driven social accounting matrix to examine the impact of a hypothetical foot-and-mouth disease (FMD) outbreak in a relatively isolated part of the United States, Utah, under various levels of livestock traceability. The analysis demonstrates that a significant regional economic impact in Utah would result from an FMD outbreak but that improved levels of traceability would be very important in helping to reduce the negative economic consequences of the outbreak.


2009 ◽  
Vol 39 (9) ◽  
pp. 2609-2613 ◽  
Author(s):  
Rísia Lopes Negreiros ◽  
Marcos Amaku ◽  
Ricardo Augusto Dias ◽  
Fernando Ferreira ◽  
João Crisostomo Mauad Cavalléro ◽  
...  

In the southern region of Mato Grosso do Sul state, Brazil, a foot-and-mouth disease (FMD) epidemic started in September 2005. A total of 33 outbreaks were detected and 33,741 FMD-susceptible animals were slaughtered and destroyed. There were no reports of FMD cases in other species than bovines. Based on the data of this epidemic, it was carried out an analysis using the K-function and it was observed spatial clustering of outbreaks within a range of 25km. This observation may be related to the dynamics of foot-and-mouth disease spread and to the measures undertaken to control the disease dissemination. The control measures were effective once the disease did not spread to farms more than 47 km apart from the initial outbreaks.


2019 ◽  
Vol 56 (12) ◽  
pp. 1052-1054 ◽  
Author(s):  
Dhanya Dharmapalan ◽  
Vinay K. Saxena ◽  
Shailesh D. Pawar ◽  
Tarique H. I. H. Qureshi ◽  
Priyanka Surve

Author(s):  
Francis Mugabi ◽  
Joseph Mugisha ◽  
Betty Nannyonga ◽  
Henry Kasumba ◽  
Margaret Tusiime

AbstractThe problem of foot and mouth disease (FMD) is of serious concern to the livestock sector in most nations, especially in developing countries. This paper presents the formulation and analysis of a deterministic model for the transmission dynamics of FMD through a contaminated environment. It is shown that the key parameters that drive the transmission of FMD in a contaminated environment are the shedding, transmission, and decay rates of the virus. Using numerical results, it is depicted that the host-to-host route is more severe than the environmental-to-host route. The model is then transformed into an optimal control problem. Using the Pontryagin’s Maximum Principle, the optimality system is determined. Utilizing a gradient type algorithm with projection, the optimality system is solved for three control strategies: optimal use of vaccination, environmental decontamination, and a combination of vaccination and environmental decontamination. Results show that a combination of vaccination and environmental decontamination is the most optimal strategy. These results indicate that if vaccination and environmental decontamination are used optimally during an outbreak, then FMD transmission can be controlled. Future studies focusing on the control measures for the transmission of FMD in a contaminated environment should aim at reducing the transmission and the shedding rates, while increasing the decay rate.


2017 ◽  
Vol 145 (14) ◽  
pp. 2896-2911 ◽  
Author(s):  
A. SUMI ◽  
S. TOYODA ◽  
K. KANOU ◽  
T. FUJIMOTO ◽  
K. MISE ◽  
...  

SUMMARYThe purpose of this study was to clarify the association between hand, foot, and mouth disease (HFMD) epidemics and meteorological conditions. We used HFMD surveillance data of all 47 prefectures in Japan from January 2000 to December 2015. Spectral analysis was performed using the maximum entropy method (MEM) for temperature-, relative humidity-, and total rainfall-dependent incidence data. Using MEM-estimated periods, long-term oscillatory trends were calculated using the least squares fitting (LSF) method. The temperature and relative humidity thresholds of HFMD data were estimated from the LSF curves. The average temperature data indicated a lower threshold at 12 °C and a higher threshold at 30 °C for risk of HFMD infection. Maximum and minimum temperature data indicated a lower threshold at 6 °C and a higher threshold at 35 °C, suggesting a need for HFMD control measures at temperatures between 6 and 35 °C. Based on our findings, we recommend the use of maximum and minimum temperatures rather than the average temperature, to estimate the temperature threshold of HFMD infections. The results obtained might aid in the prediction of epidemics and preparation for the effect of climatic changes on HFMD epidemiology.


Sign in / Sign up

Export Citation Format

Share Document