scholarly journals Weak Fault Detection of Tapered Rolling Bearing Based on Penalty Regularization Approach

Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 184 ◽  
Author(s):  
Qing Li ◽  
Steven Liang

Aimed at the issue of estimating the fault component from a noisy observation, a novel detection approach based on augmented Huber non-convex penalty regularization (AHNPR) is proposed. The core objectives of the proposed method are that (1) it estimates non-zero singular values (i.e., fault component) accurately and (2) it maintains the convexity of the proposed objective cost function (OCF) by restricting the parameters of the non-convex regularization. Specifically, the AHNPR model is expressed as the L1-norm minus a generalized Huber function, which avoids the underestimation weakness of the L1-norm regularization. Furthermore, the convexity of the proposed OCF is proved via the non-diagonal characteristic of the matrix BTB, meanwhile, the non-zero singular values of the OCF is solved by the forward–backward splitting (FBS) algorithm. Last, the proposed method is validated by the simulated signal and vibration signals of tapered bearing. The results demonstrate that the proposed approach can identify weak fault information from the raw vibration signal under severe background noise, that the non-convex penalty regularization can induce sparsity of the singular values more effectively than the typical convex penalty (e.g., L1-norm fused lasso optimization (LFLO) method), and that the issue of underestimating sparse coefficients can be improved.

2019 ◽  
Vol 25 (6) ◽  
pp. 1263-1278 ◽  
Author(s):  
Wei Teng ◽  
Wei Wang ◽  
Haixing Ma ◽  
Yibing Liu ◽  
Zhiyong Ma ◽  
...  

Wind turbines revolve in difficult operating conditions due to stochastic loads and produce massive vibration signals, which cause obstacles in detecting potential fault information. To overcome this, an adaptive fault detection approach is presented in this paper on the basis of parameterless empirical wavelet transform (PEWT) and the margin factor. PEWT can decompose the vibration signal into a series of empirical modes (EMs) through splitting its Fourier spectrum, using the scale space method and adaptively constructing an orthogonal wavelet filter bank. The margin factor is utilized as a key metric for automatically selecting the EM which is sensitive to the potential faults. The method presented in this paper will improve the efficiency and accuracy of fault information for the condition monitoring of wind turbines.


2013 ◽  
Vol 753-755 ◽  
pp. 2290-2296 ◽  
Author(s):  
Wen Tao Huang ◽  
Yin Feng Liu ◽  
Pei Lu Niu ◽  
Wei Jie Wang

In the early fault diagnosis of rolling bearing, the vibration signal is mixed with a lot of noise, resulting in the difficulties in analysis of early weak fault signal. This article introduces resonance-based signal sparse decomposition (RSSD) into rolling bearing fault diagnosis, and studies the fault information contained in high resonance component and low resonance component. This article compares the effect of the two resonance components to extract rolling bearing fault information in four aspects: the amount of fault information, frequency resolution of subbands, sensitivity to noise and immunity to autocorrelation processing. We find that the high resonance component has greater advantage in extraction of rolling bearing fault information, and it is able to indicate rolling bearing failure accurately.


Author(s):  
Xiaoli Xu ◽  
Xiuli Liu

Due to the influence of random wind shear in the atmospheric phenomenon, the random vibration of the main shaft of the wind turbine generator is generated. This vibration signal will be mixed with the misalignment signal of the high-speed shaft, which will cause interference to the fault diagnosis. Based on the analysis of the phenomenon of wind shear and the fault, the independent component analysis was carried out on the high-speed shaft mixed vibration signals on the basis of using rapid fixed point algorithm based on kurtosis, and the weak fault information is extracted successfully. At the same time, this method was compared with the weak information extraction method based on wavelet denoising, which proved the superiority of the proposed method. The experimental results show that the method has good field applicability and has a good application prospect in the field of weak information extraction for rotating machinery of wind power generation.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Guanchen Wu ◽  
Nengyu Yan ◽  
Kwang-nam Choi ◽  
Hoekyung Jung ◽  
Kerang Cao

The vibration and sound signals get widely applications in fault diagnosis of rolling bearing systems, but the detection accuracy is unstable at different measuring positions. This paper puts forward a two-step vibration-sound signal fusion method, in which sound signal fusion and vibration-sound signal fusion are executed respectively. The sound signals are fused through weighting to the vibration signal to reduce the influence by measuring positions, and the phase difference is eliminated by a sliding window on the time axis. Then a second fusion between the vibration signal and sound signal is conducted after normalization and superposition, and the performance of two-step fusion is compared with the existing direct fusion. Results show that the two-step fusion provides a larger signal-to-noise ratio, and the amplitudes of characteristic frequencies are also higher. A cascaded bistable stochastic resonance system is applied in the post-processing of the fusion signal to make the signal features more clear, and it is proved that the fault detection effect has an obvious improvement after the whole process. This method provides a new approach for weak fault feature detection in vibration and sound signals, and is of great significance for the maintenance of rolling bearing systems.


2013 ◽  
Vol 819 ◽  
pp. 292-296 ◽  
Author(s):  
Dai Yi Mo ◽  
Ling Li Cui ◽  
Jin Wang ◽  
Yong Gang Xu

In order to extract the early weak fault information submerged in strong background noise of the bearing vibration signal, a delayed correlation envelope technique based on sparse signal decomposition method is proposed. This method can improve the signal to noise and extract the fault information efficiently. For the strong noise problem in the early fault, based on D-value of adjacent residual energy as the termination condition of the iterative method, reducing the noise effectively, and combine it with delayed correlation to enhance the denoising effect. The analysis results of roller bearing experimental data confirm the feasibility and validity of this method.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jiakai Ding ◽  
Liangpei Huang ◽  
Dongming Xiao ◽  
Lingli Jiang

It is very difficult to extract the feature frequency of the vibration signal of the rolling bearing early weak fault and in order to extract its feature frequency quickly and accurately. A method of extracting early weak fault vibration signal feature frequency of the rolling bearing by intrinsic time-scale decomposition (ITD) and autoregression (AR) minimum entropy deconvolution (MED) is proposed in this paper. Firstly, the original early weak fault vibration signal of the rolling bearing is decomposed by the ITD algorithm to proper rotations (PRs) with fault feature frequency. Then, the sample entropy value of each PR is calculated to find the largest PRs of the sample entropy. Finally, the AR-MED filtering algorithm is utilized to filter and reduce the noise of the largest PRs of the sample entropy value, and the early weak fault vibration signal feature frequency of the rolling bearing is accurately extracted. The results show that the ITD-AR-MED method can extract the early weak fault vibration signal feature frequency of the rolling bearing accurately.


2020 ◽  
pp. 107754632095495
Author(s):  
Bing Wang ◽  
Xiong Hu ◽  
Tao X Mei ◽  
Sun D Jian ◽  
Wang Wei

In allusion to the issue of rolling bearing degradation feature extraction and degradation condition clustering, a logistic chaotic map is introduced to analyze the advantages of C0 complexity and a technique based on a multidimensional degradation feature and Gath–Geva fuzzy clustering algorithmic is proposed. The multidimensional degradation feature includes C0 complexity, root mean square, and curved time parameter which is more in line with the performance degradation process. Gath–Geva fuzzy clustering is introduced to divide different conditions during the degradation process. A rolling bearing lifetime vibration signal from intelligent maintenance system bearing test center was introduced for instance analysis. The results show that C0 complexity is able to describe the degradation process and has advantages in sensitivity and calculation speed. The introduced degradation indicator curved time parameter can reflect the agglomeration character of the degradation condition at time dimension, which is more in line with the performance degradation pattern of mechanical equipment. The Gath–Geva fuzzy clustering algorithmic is able to cluster degradation condition of mechanical equipment such as bearings accurately.


2003 ◽  
Vol 3 (3) ◽  
pp. 193-202
Author(s):  
K. Chen ◽  
L.-A. Wu

Motivated by the Kronecker product approximation technique, we have developed a very simple method to assess the inseparability of bipartite quantum systems, which is based on a realigned matrix constructed from the density matrix. For any separable state, the sum of the singular values of the matrix should be less than or equal to $1$. This condition provides a very simple, computable necessary criterion for separability, and shows powerful ability to identify most bound entangled states discussed in the literature. As a byproduct of the criterion, we give an estimate for the degree of entanglement of the quantum state.


Sign in / Sign up

Export Citation Format

Share Document