scholarly journals Application of a Nonlinear Hammerstein-Wiener Estimator in the Development and Control of a Magnetorheological Fluid Haptic Device for Robotic Bone Biopsy

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 83 ◽  
Author(s):  
Elnaz Shokrollahi ◽  
Andrew Goldenberg ◽  
James Drake ◽  
Kyle Eastwood ◽  
Matthew Kang

A force generator module (FGM) based on magnetorheological fluid (MRF) was developed to provide force-feedback information for applications in tele-robotic bone biopsy procedures. The FGM is capable of rapidly re-producing a wide range of forces that are common in bone biopsy applications. As a result of the nonlinear nature of MRF, developing robust controllers for these mechanisms can be challenging. In this paper, we present a case study motivated by robotic bone biopsy. We use a non-linear Hammerstein-Wiener (H-W) estimator to address this challenge. The case is presented through three studies. First, an experiment to develop design constraints is presented and describes biopsy force measurements for various animal tissues. Required output forces were found to range between <1 N and <50 N. A second study outlines the design of the FGM and presents the experimental characterization of the hysteretic behavior of the MRF. This data is then used as estimators and validators to develop the nonlinear Hammerstein-Wiener (H-W) model of the MRF. Validation experiments found that the H-W model is capable of predicting the behavior of the MRF device with 95% accuracy and can eliminate hysteresis in a closed-loop control system. The third study demonstrates the FGM used in a 1-DOF haptic controller in a simulated robotic bone-biopsy. The H-W control tracked the input signal while compensating for magnetic hysteresis to achieve optimal performance. In conclusion, the MRF-based device can be used in surgical robotic operations that require a high range of force measurements.

2002 ◽  
Vol 2 (3) ◽  
pp. 237-241 ◽  
Author(s):  
Daniel Burns and ◽  
Thomas G. Sugar

New, commercially available, automatic, code-generation tools are used in teaching and lab exercises to progress from controller design, to simulation, and finally to implementation on mechanical hardware. An embedded computing system consists of a dedicated, digital, electronic-processor that controls a system that interacts with the environment. Case studies highlighting a force-feedback joystick and motor servo control with encoder feedback are presented to illustrate laboratory exercises that teach mechanical engineering students hardware-in-the-loop control system design. Using these software tools, design iterations and multiple controllers are quickly simulated and downloaded to the actual hardware.


2018 ◽  
Vol 23 (2) ◽  
pp. 151-159
Author(s):  
Róbert Szabolcsi

Abstract Unmanned aerial vehicles are famous for their wide range of applications. In D3 (Dirty-Dull-Dangerous) UAV applications flight conditions may vary on large scale. External disturbances like atmospheric turbulences and gusts may be subjected to UAV, and as a result, UAV flight mission might be conducted with high level of the degradation of the accuracy. Sensor noises are also present, and theirs negligence might lead to improper dynamic performances of the closed loop control systems. Uncertainties of the control systems being structured or unstructured may tend the closed loop control system to stability bounds. In worst case, uncertainties may destabilize closed loop control systems. The purpose of the author is to present a robust controller design method called H2-optimal design ensuring stability of the closed loop control systems with simultaneous dynamic performances predefined for the closed loop control system.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4194
Author(s):  
Maciej Chojowski ◽  
Aleksander Dziadecki ◽  
Marcin Baszyński ◽  
Roman Dudek ◽  
Andrzej Stobiecki ◽  
...  

This paper presents the overall concept of a wideband and cost-effective current sensor. The sensor consists of a paralleled Hall-based current sensor (LEM) and a wideband current transformer (CT). A significant improvement of the band range and the moderate cost of the proposed sensor enable it to be used both to measure the instantaneous value in order to precisely plot the current and to obtain signals for a closed-loop control system of high-frequency power electronic converters. The sensor should be considered as an Augmented LEM Current Sensor (ALCS), which allows it to measure low- and high-frequency current signals. Finally, it allows for the measurement of a bipolar current up to 40 A. The overall cost of the sensor, along with the previously mentioned benefits, is an important feature of the proposed sensor. The present paper presents the analytical concept of the sensor (ALCS), a theoretical approach using simulation analysis, and the experimental results, which clearly demonstrate the wide range of the sensor in dynamic and static measurements.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 46
Author(s):  
Mircea Dulau ◽  
Stelian-Emilian Oltean

An important stage in robust control design is to define the desired performances of the closed loop control system using the models of the frequency sensitivity functions S. If the frequency sensitivity functions remain within the limits imposed by these models, the control performances are met. In terms of the sensitivity functions, the specifications include: shape of S over selected frequency ranges, peak magnitude of S, bandwidth frequency, and tracking error at selected frequencies. In this context, this paper presents a study of the effects of the specifications of the weighting functions on the performances of robust control systems.


2011 ◽  
Vol 219-220 ◽  
pp. 3-7
Author(s):  
Ning Zhang ◽  
Rong Hua Liu

An expert control system based on transient response patterns and expert system techniques is proposed in this paper. Depending on the features of the closed-loop control system determines the control decision and adjusts the parameters of the controller. The proposed method requires minimal proper information about the controlled plant and, with the linear re-excitation learning method, the system is kept satisfying the performance criterion.


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


Sign in / Sign up

Export Citation Format

Share Document