scholarly journals Low-Cost, Open-Source Mechanical Ventilator with Pulmonary Monitoring for COVID-19 Patients

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 84
Author(s):  
Leonardo Acho ◽  
Alessandro N. Vargas ◽  
Gisela Pujol-Vázquez

This paper shows the construction of a low-cost, open-source mechanical ventilator. The motivation for constructing this kind of ventilator comes from the worldwide shortage of mechanical ventilators for treating COVID-19 patients—the COVID-19 pandemic has been striking hard in some regions, especially the deprived ones. Constructing a low-cost, open-source mechanical ventilator aims to mitigate the effects of this shortage on those regions. The equipment documented here employs commercial spare parts only. This paper also shows a numerical method for monitoring the patients’ pulmonary condition. The method considers pressure measurements from the inspiratory limb and alerts clinicians in real-time whether the patient is under a healthy or unhealthy situation. Experiments carried out in the laboratory that had emulated healthy and unhealthy patients illustrate the potential benefits of the derived mechanical ventilator.

2020 ◽  
Vol 6 (5) ◽  
pp. 0585-0593
Author(s):  
Bruna Couto Molinar Henrique ◽  
Leonardo Couto Molinar Henrique ◽  
Humberto Molinar Henrique

This work deals with implementation of an experimental flowrate control unit using free and low-cost hardware and software. The open-source software Processing was used to develop the source codes and user graphical interface and the open-source electronic prototyping platform Arduino was used to acquire data from an experimental unit. Work presents descriptions of the experimental setup, the real-time PID controllers used and theoretical/conceptual issues of Arduino. PID controllers based on internal model control, minimization of the integral of time-weighted absolute error, Ziegler-Nichols, and others were tuned for setpoint and load changes and real-time runs were carried out in order to make real-time use of  control theory learned in academy. Results showed the developed platform proved to be suitable for use in experimental setups allowing users compare their ideas and expectations with the experimental evidence in a real and low-cost fashion. In addition, the instrumentation is simple to configure with acceptable level noise and particularly useful for control/automation learning with educational purposes.


2020 ◽  
Author(s):  
Uri Adrian Prync Flato ◽  
Patricia C. dos Santos ◽  
Fábio Manhoso ◽  
Fernanda Mesquita Serva ◽  
Jeferson Dias ◽  
...  

Abstract Background: The current need for pulmonary mechanical ventilation related to COVID-19 exceeds the ability of health systems worldwide to acquire and produce mechanical ventilators. The major cause of mortality in patients with this disease is hypoxemia secondary to an inflammatory storm in the lungs associated with thrombotic events. A partnership was established between the university and the private engineering and industrial automation sector to concept and design novel a low-cost emergency mechanical ventilator that could be rapidly available for use in emergency, transport or low-resource health care system, and attend the urgent demand of artificial respiratory system that is need worldwide. It was evaluated the viability of oxygenation and pulmonary ventilation with an emergency mechanical ventilation device called 10D-EMV in animal experiments. A two-stage sequential adaptive study was conducted in 10 sheep, divided into group I (PEEP valve close to the device) and group II (PEEP valve distal to the device). Each animal underwent mechanical ventilation for a total of 120 minutes. Results: The mean oxygenation in group I and group II were 368 mmHg and 366 mmHg, respectively, while the mean partial pressure of carbon dioxide was 58 mmHg and 48 mmHg. Conclusion: This study demonstrates the viability of the 10D device as a novel proposed emergency mechanical ventilator, in order to attend the pandemics demand. Further clinical studies in humans are needed to assess its safety and efficacy.


2018 ◽  
Author(s):  
Alessio Paolo Buccino ◽  
Mikkel Elle Lepperød ◽  
Svenn-Arne Dragly ◽  
Philipp Häfliger ◽  
Marianne Fyhn ◽  
...  

AbstractObjectiveA major goal in systems neuroscience is to determine the causal relationship between neural activity and behavior. To this end, methods that combine monitoring neural activity, behavioral tracking, and targeted manipulation of neurons in closed-loop are powerful tools. However, commercial systems that allow these types of experiments are usually expensive and rely on non-standardized data formats and proprietary software which may hinder user-modifications for specific needs. In order to promote reproducibility and data-sharing in science, transparent software and standardized data formats are an advantage. Here, we present an open source, low-cost, adaptable, and easy to set-up system for combined behavioral tracking, electrophysiology and closed-loop stimulation.ApproachBased on the Open Ephys system (www.open-ephys.org) we developed multiple modules to include real-time tracking and behavior-based closed-loop stimulation. We describe the equipment and provide a step-by-step guide to set up the system. Combining the open source software Bonsai (bonsai-rx.org) for analyzing camera images in real time with the newly developed modules in Open Ephys, we acquire position information, visualize tracking, and perform tracking-based closed-loop stimulation experiments. To analyze the acquired data we provide an open source file reading package in Python.Main resultsThe system robustly visualizes real-time tracking and reliably recovers tracking information recorded from a range of sampling frequencies (30-1000Hz). We combined electrophysiology with the newly-developed tracking modules in Open Ephys to record place cell and grid cell activity in the hippocampus and in the medial entorhinal cortex, respectively. Moreover, we present a case in which we used the system for closed-loop optogenetic stimulation of entorhinal grid cells.SignificanceExpanding the Open Ephys system to include animal tracking and behavior-based closed-loop stimulation extends the availability of high-quality, low-cost experimental setup within standardized data formats serving the neuroscience community.


2020 ◽  
Vol 55 (6) ◽  
pp. 2000846 ◽  
Author(s):  
Onintza Garmendia ◽  
Miguel A. Rodríguez-Lazaro ◽  
Jorge Otero ◽  
Phuong Phan ◽  
Alexandrina Stoyanova ◽  
...  

AimCurrent pricing of commercial mechanical ventilators in low-/middle-income countries (LMICs) markedly restricts their availability, and consequently a considerable number of patients with acute/chronic respiratory failure cannot be adequately treated. Our aim was to design and test an affordable and easy-to-build noninvasive bilevel pressure ventilator to allow a reduction in the serious shortage of ventilators in LMICs.MethodsThe ventilator was built using off-the-shelf materials available via e-commerce and was based on a high-pressure blower, two pressure transducers and an Arduino Nano controller with a digital display (total retail cost <75 USD), with construction details provided open source for free replication. The ventilator was evaluated, and compared with a commercially available device (Lumis 150 ventilator; Resmed, San Diego, CA, USA): 1) in the bench setting using an actively breathing patient simulator mimicking a range of obstructive/restrictive diseases; and b) in 12 healthy volunteers wearing high airway resistance and thoracic/abdominal bands to mimic obstructive/restrictive patients.ResultsThe designed ventilator provided inspiratory/expiratory pressures up to 20/10 cmH2O, respectively, with no faulty triggering or cycling; both in the bench test and in volunteers. The breathing difficulty score rated (1–10 scale) by the loaded breathing subjects was significantly (p<0.005) decreased from 5.45±1.68 without support to 2.83±1.66 when using the prototype ventilator, which showed no difference with the commercial device (2.80±1.48; p=1.000).ConclusionThe low-cost, easy-to-build noninvasive ventilator performs similarly to a high-quality commercial device, with its open-source hardware description, which will allow for free replication and use in LMICs, facilitating application of this life-saving therapy to patients who otherwise could not be treated.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 180 ◽  
Author(s):  
Ha Quang Thinh Ngo ◽  
Thanh Phuong Nguyen ◽  
Hung Nguyen

The supervision and feeding of grazing livestock are always difficult missions. Since animals act based on habits, the real-time monitoring data logger has become an indispensable instrument to assist farmers in recognizing the status of livestock. Position-tracked and acoustic monitoring have become commonplace as two of the best methods to characterize feeding performance in ruminants. Previously, the existing methods were limited to desktop computers and lacked a sound-collecting function. These restrictions impacted the late interventions from feeders and required a large-sized data memory. In this work, an open-source framework for a data collector that autonomously captures the health information of farm animals is introduced. In this portable hardware, a Wireless Location Acoustic Sensing System (WiLASS) is integrated to infer the health status through the activities and abnormal phenomena of farming livestock via chew–bite sound identification. WiLASS involves the open modules of ESP32-WROOM, GPS NEO-6M, ADXL335 accelerometer, GY-MAX4466 amplifier, temperature sensors, and other signal processing circuits. By means of wireless communication, the ESP32-WROOM Thing micro-processor offers high speed transmission, standard protocol, and low power consumption. Data are transferred in a real-time manner from the attached sensing modules to a digital server for further analysis. The module of GPS NEO-6M Thing brings about fast tracking, high precision, and a strong signal, which is suitable for highland applications. Some computations are incorporated into the accelerometer to estimate directional movement and vibration. The GY-MAX4466 Thing plays the role of microphone, which is used to store environmental sound. To ensure the quality of auditory data, they are recorded at a minimum sampling frequency of 10 KHz and at a 12-bit resolution. Moreover, a mobile software in pocket devices is implemented to provide extended mobility and social convenience. Converging with a cloud-based server, the multi-Thing portable platform can provide access to simultaneously supervise. Message Queuing Telemetry Transport (MQTT) protocol with low bandwidth, high reliability, and bi-direction, and which is appropriate for most operating systemsOS, is embedded into the system to prevent data loss. From the experimental results, the feasibility, effectiveness, and correctness of our approach are verified. Under the changes of climate, the proposed framework not only supports the improvement of farming techniques, but also provides a high-quality alternative for poor rural areas because of its low cost and its ability to carry out a proper policy for each species.


10.29007/q4cf ◽  
2018 ◽  
Author(s):  
Ronak Vithlani ◽  
Siddharth Fultariya ◽  
Mahesh Jivani ◽  
Haresh Pandya

In this paper, we have described an operative prototype for Internet of Things (IoT) used for consistent monitoring various environmental sensors by means of low cost open source embedded system. The explanation about the unified network construction and the interconnecting devices for the consistent measurement of environmental parameters by various sensors and broadcast of data through internet is being presented. The framework of the monitoring system is based on a combination of embedded sensing units, information structure for data collection, and intellectual and context responsiveness. The projected system does not involve a devoted server computer with respect to analogous systems and offers a light weight communication protocol to monitor environment data using sensors. Outcomes are inspiring as the consistency of sensing information broadcast through the projected unified network construction is very much reliable. The prototype was experienced to create real-time graphical information rather than a test bed set-up.


Author(s):  
Chang-Gyu Cgseong ◽  
Jung-Yee Kim ◽  
Doo-Jin Park

<p>Recently, the Internet of things(IoT) has received great attention, and the demand for IOT applications in various fields is increasing. But drawbacks of IoT, such as having to use dedicated equipment and having to pay for a flat fee monthly, do not satisfy the consumers’ demands. These shortcomings of IoT is causing the appearance of users who try to design the environment of IoT that responds their demands and naturally, attempts to have monitoring system through open-source hardware like Arduino. Open source hardware has attracted a great deal of attention for the diffusion of the Internet of things as a key element of the Internet construction. The emergence of open source hardware, which has the advantage of low cost and easy and fast development, has made it possible to embody the idea of object Internet application services. In this paper, we design and implement a system that controls the objects in real time using open source hardware and MQTT protocol.</p>


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1066 ◽  
Author(s):  
Andrew J. Calderwood ◽  
Richard A. Pauloo ◽  
Alysa M. Yoder ◽  
Graham E. Fogg

Population growth, climate uncertainties, and unsustainable groundwater pumping challenge aquifer sustainability worldwide. Efficient and data-driven groundwater supply management is a necessity to maintain essential water-dependent functions. Currently, managers lack the cost-effective, scalable, and reliable groundwater monitoring systems needed to collect vital groundwater data. Existing automated groundwater monitoring systems tend to be cost-prohibitive, and manual methods lack the spatial or temporal resolution to sufficiently meet critical water modeling, management, and policy objectives. In this study, we developed a fully automated, open source, low cost wireless sensor network (LCSN) for real-time groundwater data acquisition, processing, and visualization in the South American Subbasin Groundwater Observatory (GWO), located in California, USA. We demonstrate the steps taken to create the GWO, including field, hardware, software, and data pipeline components so that it may be easily reproduced in new areas. We find that the GWO is comparable in cost to manual measurements at a weekly measurement frequency, and costs between three and four times less than comparable commercially available telemetry and dashboard systems, largely due to the use of free open source software to acquire, clean, store, and visualize data. The open source-powered GWO thus lowers the financial and technical barrier of entry for real-time groundwater monitoring, creating the potential for more informed water management worldwide, particularly in regions whose managers are restricted by the high capital costs of commercial monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document