scholarly journals Crack Growth in a Range of Additively Manufactured Aerospace Structural Materials

Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 118 ◽  
Author(s):  
Athanasios Iliopoulos ◽  
Rhys Jones ◽  
John Michopoulos ◽  
Nam Phan ◽  
R. Singh Raman

The aerospace industry is now beginning to adopt Additive Manufacturing (AM), both for new aircraft design and to help improve aircraft availability (aircraft sustainment). However, MIL-STD 1530 highlights that to certify airworthiness, the operational life of the airframe must be determined by a damage tolerance analysis. MIL-STD 1530 also states that in this process, the role of testing is merely to validate or correct the analysis. Consequently, if AM-produced parts are to be used as load-carrying members, it is important that the d a / d N versus ΔK curves be determined and, if possible, a valid mathematical representation determined. The present paper demonstrates that for AM Ti-6Al-4V, AM 316L stainless steel, and AM AerMet 100 steel, the d a / d N versus ΔK curves can be represented reasonably well by the Hartman-Schijve variant of the NASGRO crack growth equation. It is also shown that the variability in the various AM d a / d N versus Δ K curves is captured reasonably well by using the curve determined for conventionally manufactured materials and allowing for changes in the threshold and the cyclic fracture toughness terms.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2746
Author(s):  
Mingjin Liu ◽  
Jiaxu Luo ◽  
Jin Chen ◽  
Xueqin Gao ◽  
Qiang Fu ◽  
...  

With the development of polymer science, more attention is being paid to the longevity of polymer products. Slow crack growth (SCG), one of the most important factors that reveal the service life of the products, has been investigated widely in the past decades. Here, we manufactured an isotactic polypropylene (iPP) sample with a novel shear layer–spherulites layer alternated structure using multiflow vibration injection molding (MFVIM). However, the effect of the alternated structure on the SCG behavior has never been reported before. Surprisingly, the results showed that the resistivity of polymer to SCG can be enhanced remarkably due to the special alternated structure. Moreover, this sample shows unique slow crack propagation behavior in contrast to the sample with the same thickness of shear layer, presenting multiple microcracks in the spherulites layer, which can explain the reason of the resistivity improvement of polymer to SCG.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1400
Author(s):  
Rhys Jones ◽  
Calvin Rans ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos ◽  
Nam Phan ◽  
...  

The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman–Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.


2006 ◽  
Vol 356 (1-3) ◽  
pp. 70-77 ◽  
Author(s):  
Xianglin Wu ◽  
Xiao Pan ◽  
James C. Mabon ◽  
Meimei Li ◽  
James F. Stubbins

2002 ◽  
Vol 734 ◽  
Author(s):  
Vladislav Skorokhod

ABSTRACTAn equivalent circuit model of electrical conduction in polymer-filler particulate composites was developed in this study. The equivalent circuit was constructed for an individual composite particle with a sub-monolayer of conductive filler, where the filler particles play the role of circuit nodes, and inter-particle contacts are represented by resistors between the nodes. The mathematical representation of the equivalent circuit in the form of a linear system of equations for nodal potentials was solved numerically with Matlab software to calculate conductance of the composite as a function of the amount of conductive filler, filled fraction of the monolayer, filler-to-matrix size ratio and the degree of structuredness (non-randomness) of the filler material. Additionally, percolation concentrations and statistical distributions of composite conductance were calculated as functions of the filler-to-matrix size ratio.


Author(s):  
Yoichi Takeda ◽  
Zhanpeng Lu ◽  
Takeshi Adachi ◽  
Qunjia Peng ◽  
Jiro Kuniya ◽  
...  

It is known that stress corrosion cracking (SCC) found in the operational power plants show complex cracking behaviors and it’s resulted in complex crack shape e.g. crack branching and its uneven crack front. For the cracking near the weldment, this is due to crack penetrated along the complex distribution of residual stress and strain hardened area. In this investigation, in order to advance the accuracy for crack growth prediction with considering such complex fields, theoretical formulation for SCC growth was further modified. Hardness of the materials, which is a measureable parameter even in operational power plant, was focused on to reflect strain hardening of the component like heat affected zone of the weldments. The theoretical formulation for SCC growth has terms with yield strength of the material and strain hardening exponent to describe crack tip strain rate. Strain hardening was simulated by cross rolling with the range of 4 – 32% as thickness reduction. Correlation between yield strength, strain hardening exponent at 288°C and Vickers hardness was obtained by means of tensile tests and hardness tests on 316L stainless steel. It was observed that a monotonic increase in Vickers hardness and yield strength with degree of reduction in thickness worked by cross rolling. Relationship between Vickers hardness and yield strength was found to have linear correlation. Further confirmation was made by plotting the reported mechanical properties data in terms of Vickers hardness. In addition, linear relationship was found between yield strength and strain hardening exponent. These relationships were introduced into SCC theoretical formulation and a SCC growth rate prediction curve in terms of Vickers hardness was proposed. SCC crack growth evaluation tests with selected work hardened 316L stainless steel were performed in oxygenated pure water environment at 288°C to confirm the predictability of the formulation. The prediction curve had a good agreement with available literature data as well as obtained crack growth rates in the hardness range of 140–300HV which was likely expected one in weld HAZ.


Sign in / Sign up

Export Citation Format

Share Document