scholarly journals Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 189
Author(s):  
Angelica Melone ◽  
Leah L. Bremer ◽  
Susan E. Crow ◽  
Zoe Hastings ◽  
Kawika B. Winter ◽  
...  

As the extent of secondary forests continues to expand throughout the tropics, there is a growing need to better understand the ecosystem services, including carbon (C) storage provided by these ecosystems. Despite their spatial extent, there are limited data on how the ecosystem services provided by secondary forest may be enhanced through the restoration of both ecological and agroecological functions in these systems. This study quantifies the above- and below-ground C stocks in a non-native secondary forest in Hawaiʻi where a community-based non-profit seeks to restore a multi-strata agroforestry system for cultural and ecological benefits. For soil C, we use the equivalent soil mass method both to estimate stocks and examine spatial heterogeneity at high resolution (eg. sub 5 m) to define a method and sampling design that can be replicated to track changes in C stocks on-site and elsewhere. The assessed total ecosystem C was ~388.5 Mg C/ha. Carbon stock was highest in trees (~192.4 Mg C/ha; ~50% of total C); followed by soil (~136.4 Mg C/ha; ~35% of total C); roots (~52.7 Mg C/ha; ~14% of total C); and was lowest in coarse woody debris (~4.7 Mg C/ha; ~1% of total C) and litter (~2.3 Mg C/ha; <1% of total C). This work provides a baseline carbon assessment prior to agroforest restoration that will help to better quantify the contributions of secondary forest transitions and restoration efforts to state climate policy. In addition to the role of C sequestration in climate mitigation, we also highlight soil C as a critical metric of hybrid, people-centered restoration success given the role of soil organic matter in the production of a suite of on- and off-site ecosystem services closely linked to local sustainable development goals.

Human Ecology ◽  
2021 ◽  
Author(s):  
Adam Pain ◽  
Kristina Marquardt ◽  
Dil Khatri

AbstractWe provide an analytical contrast of the dynamics of secondary forest regeneration in Nepal and Peru framed by a set of common themes: land access, boundaries, territories, and rights, seemingly more secure in Nepal than Peru; processes of agrarian change and their consequences for forest-agriculture interactions and the role of secondary forest in the landscape, more marked in Peru, where San Martín is experiencing apparent agricultural intensification, than in Nepal; and finally processes of social differentiation that have consequences for different social groups, livelihood construction and their engagement with trees, common to both countries. These themes address the broader issue of the necessary conditions for secondary forest regeneration and the extent to which the rights and livelihood benefits of those actively managing it are secured.


2007 ◽  
Vol 87 (1) ◽  
pp. 93-102 ◽  
Author(s):  
J M Kranabetter ◽  
A M Macadam

The extent of carbon (C) storage in forests and the change in C stocks after harvesting are important considerations in the management of greenhouse gases. We measured changes in C storage over time (from postharvest, postburn, year 5, year 10 and year 20) in logging slash, forest floors, mineral soils and planted lodgepole pine (Pinus contorta var. latifolia) trees from six prescribed-burn plantations in north central British Columbia. After harvest, site C in these pools averaged 139 Mg ha-1, with approximately equal contributions from mineral soils (0–30 cm), forest floors and logging slash. Together these detrital pools declined by 71 Mg C ha-1, or 51% (28% directly from the broadcast burn, and a further 23% postburn), in the subsequent 20 yr. Postburn decay in logging slash was inferred by reductions in wood density (from 0.40 to 0.34 g cm-3), equal to an average k rate of 0.011 yr-1. Losses in forest floor C, amounting to more than 60% of the initial mass, were immediate and continued to year 5, with no reaccumulation evident by year 20. Mineral soil C concentrations initially fluctuated before declining by 25% through years 10 and 20. Overall, the reductions in C storage were offset by biomass accumulation of lodgepole pine, and we estimate these plantations had become a net sink for C before year 20, although total C storage was still less than postharvest levels. Key words: C sequestration, forest floors; coarse woody debris; soil organic matter


2005 ◽  
Vol 53 (7) ◽  
pp. 639 ◽  
Author(s):  
B. P. Harms ◽  
R. C. Dalal ◽  
A. P. Cramp

Changes in soil carbon (C) and nitrogen (N) stocks following tree clearing were estimated at 32 rangeland sites in central and southern Queensland by using paired-site sampling. When corrected for soil bulk-density differences at each site, average soil C across all sites decreased after tree clearing by 8.0% for 0–0.3-m soil depth, and by 5.4% for 0–1.0-m depth; there were corresponding declines in soil C of 2.5 and 3.5tha–1, respectively. Mean soil C stocks (excluding surface litter, extractable roots and coarse charcoal) at uncleared sites were 29.5tha–1 for 0–0.3-m soil depth, and 62.5tha–1 for 0–1.0-m depth. Mean soil C stocks (0–0.3m) were 41% of the mean total C for the soil–plant system (soil + litter/woody debris + stand biomass) at uncleared sites. Soil C decline (0–0.3m) accounted for approximately 7% of the average total C lost because of land clearing across all sites. Soil C stocks at uncleared sites were correlated with tree basal area, clay content and soil phosphorus (P) content. Changes in soil C after tree clearing were strongly correlated to initial soil C contents at the uncleared sites, and were associated with particular vegetation groups and soil types. Changes in soil N were strongly correlated with changes in soil C; however, the average change in soil N across all sites was not significant. Given the size of the C and N pools in rangeland soils, the factors that influence soil C and soil N dynamics in rangeland systems need to be better understood for the effective management of C stocks in these soils.


2018 ◽  
Vol 14 (9) ◽  
pp. 20180416 ◽  
Author(s):  
Mary A. Young ◽  
Peter I. Macreadie ◽  
Clare Duncan ◽  
Paul E. Carnell ◽  
Emily Nicholson ◽  
...  

Researchers are increasingly studying carbon (C) storage by natural ecosystems for climate mitigation, including coastal ‘blue carbon’ ecosystems. Unfortunately, little guidance on how to achieve robust, cost-effective estimates of blue C stocks to inform inventories exists. We use existing data (492 cores) to develop recommendations on the sampling effort required to achieve robust estimates of blue C. Using a broad-scale, spatially explicit dataset from Victoria, Australia, we applied multiple spatial methods to provide guidelines for reducing variability in estimates of soil C stocks over large areas. With a separate dataset collected across Australia, we evaluated how many samples are needed to capture variability within soil cores and the best methods for extrapolating C to 1 m soil depth. We found that 40 core samples are optimal for capturing C variance across 1000's of kilometres but higher density sampling is required across finer scales (100–200 km). Accounting for environmental variation can further decrease required sampling. The within core analyses showed that nine samples within a core capture the majority of the variability and log-linear equations can accurately extrapolate C. These recommendations can help develop standardized methods for sampling programmes to quantify soil C stocks at national scales.


2005 ◽  
Vol 85 (Special Issue) ◽  
pp. 523-530 ◽  
Author(s):  
C. M. Monreal ◽  
J. D. Etchevers ◽  
M. Acosta ◽  
C. Hidalgo ◽  
J. Padilla ◽  
...  

Information on C stocks in agriculture and forest ecosystems in hillside landscapes is limited. The objective of this study was to develop and test field methods to measure above- and below-ground C stocks in hillside landscapes. Above-ground biomass in agricultural system was determined by measuring weight of residues left after crop harvest. In degraded secondary forests, tree biomass was estimated using allometric equations developed from in situ measurements. Herbs + bushes and litter dry weight were measured in two 0.25-m2 quadrats located within one 100-m2 treed plots. Carbon stocks were determined after chemical analysis of plant tissue and soil samples by dry combustion. Geo-referenced cores were taken inside a 1-m-diameter soil sampling clock that allows for spatial and temporal monitoring of soil C changes. The clock was marked with 12 divisions to establish the exact location of present and future sampling points. The below-ground fraction of C (mineral soil and fine roots) amounted to nearly 95% of the total C stock in agricultural systems and between 57 and 82% in the case of forest systems. Soil C stocks in hillside agricultural soils were higher than those found in forested soils with 70% of the C stored below-ground residing in the 0–45 cm of soil. The field method detected differences in C stocks in pools associated with various vegetations and soils in hillside ecosystems. Key words: Soil carbon, belowground carbon, sampling clock, hillside agriculture, Mexico


Jurnal MIPA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 115
Author(s):  
Akbar Arafah Embo ◽  
Roni Koneri ◽  
Saroyo . ◽  
Adelfia Papu

Pohon sebagai penyusun utama kawasan hutan berperan penting dalam pengaturan tata air, cadangan plasma nutfah, penyangga kehidupan, sumber daya pembangunan dan sumber devisa Negara. Peranan pohon-pohon dalam komunitas hutan semakin sulit dipertahankan mengingat tekanan masyarakat terhadap kelompok tumbuhan dari waktu ke waktu terus meningkat.Penelitian ini bertujuan untuk mengkaji jenis-jenis pohon yang berada di kawasan Cagar Alam Gunung Ambang, Sulawesi Utara. Metode penelitian yang digunakan yaitu metode garis berpetak yang merupakan modifiksi dari metode petak atau plot ganda dan metode jalur. Tipe habitat yang dijadikan titik pengambilan sampel adalah hutan primer dan hutan sekunder. Hasil pengamatan diperoleh sebanyak 38 jenis pohon penyusun hutan di Gunung Ambang yang termasuk dalam 22 suku. Pada hutan primer disusun oleh 37 jenis dan 22 suku, sedangkan pada hutan sekunder terdiri dari 28 jenis yang termasuk dalam 18 suku. Jenis pohon yang mendominasi setiap lokasi penelitian yaitu suku Magnoliaceae dan Arecaceae.Tree as the main constituent of forests play an important role in water regulation, germplasm reserves, life support, development resources and the country's foreign exchange resources. The role of trees in the forest communities are difficult to be sustained because the people pressure increase on the trees day by day. This study aims to assess the types of trees that are in the nature reserve area of ​​Gunung Ambang, North Sulawesi. The method used is the line transect plots that is modified  from the plot method or a double plot and track method. The type of habitat that is used as the starting sampling point is the  primary forests and secondary forests. Result of observations showed that Gunung Ambang is composed by 38 species of plant in 22 family. In the primary forest composed by 37 species and 22 Family, whereas in secondary forest consists of 28 species in 18 family. Types of trees that dominate each research location are Family Magnoliaceae and  Family Arecaceae.


Soil Research ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 182 ◽  
Author(s):  
R. Calvelo Pereira ◽  
M. J. Hedley ◽  
M. Camps Arbestain ◽  
P. Bishop ◽  
K. E. Enongene ◽  
...  

Permanent pastures require periodic renewal (cultivation and resowing) to maintain their productive potential, which involves a short-term carbon (C) loss. Normal cultivation (ploughing or discing) often involves only the top 10–15 cm, or less, of pasture soils. A regrassing field trial with ryegrass plus white clover swards was established in 2011 to assess the effect of deeper ploughing (25 cm) on C storage in an imperfectly drained soil (Tokomaru silt loam). The site was core sampled (0–30 cm depth) 2 and 4 years (i.e. in 2013 and 2015 respectively) after cultivation and regrassing (soil inversion treatment) to assess changes in soil C content at different depths. At both times, an adjacent uncultivated ryegrass paddock (undisturbed pasture treatment) under similar grazing intensity was also sampled and C stocks were compared. Profiles of cultivated soils (soil inversion) showed higher (P < 0.01) C stocks than the adjacent permanent pasture at the nominal 15–25 and 25–30 cm depths and significantly lower (P < 0.01) C stocks in the topsoil (nominal 0–5 cm depth) for both years sampled (2013, 2015). These findings imply that the differences (inversion – pasture) were consistent 4 years after cultivation and deep ploughing at pasture renewal had resulted in an overall increase in soil C mass to approximately 30 cm of ~18% (13.9 Mg C ha–1; equivalent soil mass 3701 Mg soil ha–1) compared with not undertaking the regrassing. This gain in soil C may be temporary, but in a period of 4 years it has significantly increased the net residence time of C in soil related to soil inversion.


2014 ◽  
Vol 44 (5) ◽  
pp. 441-448 ◽  
Author(s):  
Kai Yang ◽  
Jiaojun Zhu ◽  
Shuang Xu

Soil organic matter decomposition, a major process that affects soil carbon (C) storage, is controlled by the available nitrogen (N) in soils. However, little is known about the effects of the various forms of N input on organic matter decomposition in typical temperate forest types such as secondary forests and larch plantations. A 56-day laboratory incubation experiment was performed to determine the effects of dominant N forms (ammonium dominant = NH4+; ammonium nitrate dominant = NH4NO3; and nitrate dominant = NO3−) and four N levels (control = no N added; low N = 25 mg N·kg soil−1; medium N = 50 mg N·kg soil−1; and high N = 75 mg N·kg soil−1) on soil C mineralization in secondary forest and larch plantation soils. The results indicated that the addition of N inhibits C mineralization, regardless of the form of N applied in the secondary forest soil, whereas NH4+-dominant soil decreased C mineralization in the larch plantation soil. Furthermore, among the various forms of N, the addition of NH4+ reduced C mineralization the most compared with NO3– and NH4NO3 additions in the secondary forest soil. Additional N generally suppressed phenol oxidase activity but had no effects on activities of exoglucanase, β-glucosidase, and N-acetyl-β-glucosaminidase or soluble organic C in the secondary forest soil. The decrease in phenol oxidase activity that was associated with the addition of N is likely to have an effect on soil C mineralization. We also observed that soil pH decreased with the increasing rate of N input in the secondary forest soil, which indicates that soil C mineralization may be sensitive to the amount of N through changes in soil pH. Overall, the addition of N resulted in changes in soil C mineralization that depended on the form of the N input and the forest type. The application of NH4+-dominant N influenced soil C dynamics in the secondary forest and larch plantation soils in this short-term experiment.


2022 ◽  
Author(s):  
Jefferson S. Hall ◽  
Joshua S. Plisinski ◽  
Stephanie K. Mladinich ◽  
Michiel van Breugel ◽  
Hao Ran Lai ◽  
...  

Abstract Context Tropical forest loss has a major impact on climate change. Secondary forest growth has potential to mitigate these impacts, but uncertainty regarding future land use, remote sensing limitations, and carbon model accuracy have inhibited understanding the range of potential future carbon dynamics. Objectives We evaluated the effects of four scenarios on carbon stocks and sequestration in a mixed-use landscape based on Recent Trends (RT), Accelerated Deforestation (AD), Grow Only (GO), and Grow Everything (GE) scenarios. Methods Working in central Panama, we coupled a 1-ha resolution LiDAR derived carbon map with a locally derived secondary forest carbon accumulation model. We used Dinamica EGO 4.0.5 to spatially simulate forest loss across the landscape based on recent deforestation rates. We used local studies of belowground, woody debris, and liana carbon to estimate ecosystem scale carbon fluxes. Results Accounting for 58.6 percent of the forest in 2020, secondary forests (< 50 years) accrue 88.9 percent of carbon in the GO scenario by 2050. RT and AD scenarios lost 36,707 and 177,035 ha of forest respectively by 2030, a carbon gain of 7.7 million Mg C (RT) and loss of 2.9 million Mg C (AD). Growing forest on all available land (GE) could achieve 56 percent of Panama’s land-based carbon sequestration goal by 2050. Conclusions Our estimates of potential carbon storage demonstrate the important contribution of secondary forests to land-based carbon sequestration in central Panama. Protecting these forests will contribute significantly to meeting Panama’s climate change mitigation goals and enhance water security.


2021 ◽  
Vol 376 (1834) ◽  
pp. 20210084 ◽  
Author(s):  
Rattan Lal ◽  
Curtis Monger ◽  
Luke Nave ◽  
Pete Smith

The soil carbon (C) stock, comprising soil organic C (SOC) and soil inorganic C (SIC) and being the largest reservoir of the terrestrial biosphere, is a critical part of the global C cycle. Soil has been a source of greenhouse gases (GHGs) since the dawn of settled agriculture about 10 millenia ago. Soils of agricultural ecosystems are depleted of their SOC stocks and the magnitude of depletion is greater in those prone to accelerated erosion by water and wind and other degradation processes. Adoption of judicious land use and science-based management practices can lead to re-carbonization of depleted soils and make them a sink for atmospheric C. Soils in humid climates have potential to increase storage of SOC and those in arid and semiarid climates have potential to store both SOC and SIC. Payments to land managers for sequestration of C in soil, based on credible measurement of changes in soil C stocks at farm or landscape levels, are also important for promoting adoption of recommended land use and management practices. In conjunction with a rapid and aggressive reduction in GHG emissions across all sectors of the economy, sequestration of C in soil (and vegetation) can be an important negative emissions method for limiting global warming to 1.5 or 2°C This article is part of the theme issue ‘The role of soils in delivering Nature's Contributions to People’.


Sign in / Sign up

Export Citation Format

Share Document