scholarly journals A Spectroscopic Approach to Evaluate the Effects of Different Soil Tillage Methods and Nitrogen Fertilization Levels on the Biochemical Composition of Durum Wheat (Triticum turgidum subsp. durum) Leaves and Caryopses

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 321
Author(s):  
Chiara Pro ◽  
Danilo Basili ◽  
Valentina Notarstefano ◽  
Alessia Belloni ◽  
Marco Fiorentini ◽  
...  

The agricultural sector is required to produce food at the same pace as population growth, while accounting for pollution and costs. For this reason, conservative agricultural practices have been employed worldwide. Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy has the ability to provide a snapshot of the macromolecular composition of a sample in a timely and cost-effective way and it has been widely applied in the field of agriculture to assess food quality. The aim of this study was to exploit ATR-FTIR spectroscopy to assess the impact of different soil tillage methods (conventional tillage, CT; minimum tillage, MT, and no tillage, NT) and nitrogen fertilization levels (0, 90 and 180 kg N ha−1) on the macromolecular composition of leaves and caryopses of durum wheat (Triticum turgidum subsp. durum). The analysis of the spectral data revealed that the quality of durum wheat, in terms of protein content, grown on soil with no tillage was not reduced. Indeed, with regards to caryopses, the different tillage methods influenced only the lipid and hemicellulose content, whereas the macromolecular composition of leaves was sensitive to tillage methods mostly during the early stage of growth. Moreover, no relevant effects were found in leaves and caryopses when different fertilizer concentrations were used. These results provide important knowledge supporting the adoption of both no-tillage soil treatments and reduced fertilization dosage for the development of durum wheat management strategies and support the use of spectroscopy for conservative agriculture practices.

2017 ◽  
Vol 63 (No. 6) ◽  
pp. 257-263 ◽  
Author(s):  
Faber Florian ◽  
Wachter Elisabeth ◽  
Zaller Johann G

Inter-rows in vineyards are commonly tilled in order to control weeds and/or to conserve water. While impacts of tillage on earthworms are well studied in arable systems, very little is known from vineyards. In an experimental vineyard, the impact of four reduced tillage methods on earthworms was examined: rotary hoeing, rotary harrowing, grubbing and no tillage. According to an erosion prevention programme, tillage was applied every other inter-row only while alternating rows retained vegetated. Earthworms were extracted from the treated inter-rows 10, 36, 162 and 188 days after tillage. Across dates, tillage methods had no effect on overall earthworm densities or biomass. Considering each sampling date separately, earthworm densities were affected only at day 36 after tillage leading to lower densities under rotary hoeing (150.7 ± 42.5 worms/m<sup>2</sup>) and no tillage (117.3 ± 24.8 worms/m<sup>2</sup>) than under rotary harrowing (340.0 ± 87.4 worms/m<sup>2</sup>) and grubbing (242.7 ± 43.9 worms/m<sup>2</sup>). Time since tillage significantly increased earthworm densities or biomass, and affected soil moisture and temperature. Across sampling dates, earthworm densities correlated positively with soil moisture and negatively with soil temperature; individual earthworm mass increased with increasing time since tillage. It was concluded that reduced tillage in vineyards has little impact on earthworms when applied in spring under dry soil conditions.


Poljoprivreda ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Karolina Vrandečić ◽  
Danijel Jug ◽  
Jasenka Ćosić ◽  
Jelena Ilić ◽  
Irena Jug

The effect of different conservation soil tillage (CST) treatments and different level of nitrogen fertilization on Fusarium wheat grain infection on two locations are presented in this paper. The research was conducted on winter wheat with different soil tillage treatments: conventional tillage to 30 cm depth, subsoiling to 35-40 cm depth, chiselling up to 25 cm, disk-harrowing to 10-15 cm and no-tillage, without any tillage treatments and three different nitrogen rates (N1 - amount reduced by 30% of recommended; N2 - according to standard recommendation and N3 - amount increased by 30% of recommended). The occurrence of Fusarium species was determined in all the tested variants of tillage and fertilization treatments. The effect of reduced fertilization (N1) on Fusarium sp. grain infection in all tillage treatments was statistically lower in comparison with other (N2 and N3) nitrogen treatments. The lowest percentage of wheat grains infected with Fusarium sp. was recorded in conventional tillage on location Magadenovac and no tillage treatments on location Cacinci.


Author(s):  
Nguyễn Trung Hải ◽  
Trần Thanh Đức ◽  
Vi Thị Linh

Nghiên cứu này nhằm đánh giá tác động của các biện pháp làm đất và mật độ trồng khác nhau đến quá trình sinh trưởng, phát triển, năng suất và hiệu quả kinh tế của giống ngô lai HQ2000 trên đất cát nội đồng trong vụ Đông Xuân năm 2018-2019 tại Thừa Thiên Huế. Thí nghiệm thứ nhất gồm 3 công thức gồm làm đất truyền thống, làm đất tối thiểu và không làm đất trong đó thí nghiệm thứ hai gồm 4 công thức với mật độ gieo trồng lần lượt là 47.058, 53.333, 61.538 và 66.666 cây/ha. Kết quả thí nghiệm cho thấy: Thời gian hoàn thành các giai đoạn sinh trưởng và phát triển ở các biện pháp làm đất tối thiểu có xu hướng ngắn hơn các công thức làm đất truyền thống; chiều cao cây cuối cùng dao động từ 154 đến 175cm, số lá dao động từ 16 đến 18 lá, diện tích lá đóng bắp có xu hướng giảm ở các công thức làm đất tối thiểu trong khi các yếu tố khác như chiều cao đóng bắp, chiều dài bắp, đường kính bắp và đường kính lóng gốc ở các công thức thí nghiệm dao động tương đối ít. Năng suất lý thuyết dao động từ 61 đến 72 tạ/ha, năng suất thực thu đạt cao nhất là 59,8 tạ/ha ở công thức không làm đất. Đối với biện pháp canh tác truyền thống, năng suất đạt cao nhất ở mật độ 18,5 kg hạt giống/ha (63,4 tạ/ha). Ở các công thức thí nghiệm, lợi nhuận đạt cao nhất ở công thức không làm đất và ở mật độ trồng là 18,5 kg hạt giống/ha, tương đương 61.538 cây/ha.  ABSTRACT This study aims to evaluate the impact of different tillage methods and planting densities on the growth, development, grain yield and economic efficiency of hybrid maize HQ2000 on sandy soil in the 2018-2019 Winter-Spring season in Thua Thien Hue province. The first trial consisted of three treatments including conventional tillage, limited tillage and no tillage; the second trial consisted of four treatments with planting density of 47.058, 53.333, 61.538 và 66.666 plants/ha, respectively. Experimental results showed that: The completed time of the growth and development stages at the minimum tillage methods was shorter than conventional tillage treatments; final plant height varied from 154 to 175cm, the number of leaves ranged from 16 to 18 leaves, the leaf area at ​​corn position decreased in minimum tillage treatments while other factors such as ear height, ear length, ear diameter and stalk diameter at prop root position fluctuated slightly. Potential grain yield varied from 6.1 to 7.2 tons/ha, the highest actual grain yield was 5.98 tons/ha in the no-tillage treatment. For conventional tillage, the highest grain yield was at 18.5 kg seed/ha treatment (6.34 tons/ha). In the experimental treatments, the highest profit was achieved in the no-tillage treatment and in planting density of 18.5 kg seed/ha, equivalent 61,538 plants/ha.      


2021 ◽  
Vol 13 (13) ◽  
pp. 7307
Author(s):  
Verdiana Petroselli ◽  
Emanuele Radicetti ◽  
Alireza Safahani Langeroodi ◽  
Mohamed Allam ◽  
Roberto Mancinelli

Agricultural intensification may cause significant changes in weed density due to high weed competitiveness. Therefore, sustainable practices are to be designed to get maximum benefits of plant biodiversity in the agro-ecosystems. Field experiments were conducted in 2013/2014 and 2014/2015 to evaluate the impact of fertilizer source and soil tillage on weed spectrum in durum wheat (Triticum durum Desf.). Treatments in this study were: (i) two fertilizer sources (mineral fertilizer (MIN) and municipal organic waste (MOW)), and (ii) three tillage regimes (plowing (Plo), subsoiling (Sub) and spading (SM)). A randomized complete block design with three replications was adopted. Data on weed density and biomass were collected at the wheat tillering stage. Weed density was higher in MOW than MIN (53.8 vs. 44.0 plants·m−2), especially in 2014/2015, while S was the highest among tillage regimes (58.2 plants·m−2). Annual and monocots species were always the highest in subsoiling (43.5 and 10.1 plants·m−2). The density of perennial and dicots species was higher in MOW compared with MIN plots, regardless of soil tillage management. Weed community, in terms of weed species composition, varied between the two fertilizer sources, while among soil tillage regimes, it only differed between plowing and subsoiling. Based on the analysis of weed community composition, annual dicot species were mainly associated with plowing, while monocots tended to be associated with MIN fertilizer. Spading tillage may be a useful strategy for managing weed diversity under organic fertilization, where mineral soil nitrogen availability was limited. Conversely, the spading machine produced lower grain yields than plowing with mineral fertilizer application.


2021 ◽  
Vol 12 (3) ◽  
pp. 38-47
Author(s):  
S.P. Tanchyk ◽  
◽  
O. A. Dudka ◽  
O. S. Pavlov ◽  
A. I. Babenko ◽  
...  

Numerous studies by Ukrainian and foreign scientists have shown that one of the limiting factors for obtaining a stable yield of any crop is the reserves of available moisture in the soil, especially in critical periods of plant growth. The article presents the results of research on the impact of three farming systems – industrial (control), ecological and biological and four options for primary soil tillage – plowing by 20–22 cm (control), chiseling by 20–22 cm, disking by 10–12 cm, disking for 6–8 cm on the reserves of productive moisture in the soil for growing spring durum wheat. According to research, it is established that the highest moisture reserves in a meter of soil for the period of sowing wheat was obtained by combining the biological farming system and chisel tillage, which allowed to accumulate in 2018 – 199.1 mm, 2019 – 179.6 and 2020 – 159.9 mm of available moisture in the soil. The use of chisel tillage in combination with industrial and organic farming systems also provides an advantage in all years of observations over plowing combinations and both disking options with these systems. During the growing season, against the background of all studied agricultural systems, use of chiseling and disking provided the highest reserves of available moisture in the soil. However, the best option should be considered a combination of ecological farming system with chiseling by 20–22 cm, which provided for the flowering period in 2018 – 74.0 mm of moisture, 2019 – 93.7 and 2020 – 90.9 mm, and for the harvest period culture, these indicators were, respectively, 61.0, 67.7 and 61.6 mm. The grain yield of spring durum wheat in this variant was significantly the highest in the experiment and was, respectively, 4.6, 6.7 and 5.6 t/ha.


2018 ◽  
Vol 53 (7) ◽  
pp. 833-839
Author(s):  
Renato Yagi

Abstract: The objective of this work was to evaluate the residual effects of occasional soil tillage in a 17-year-old, no-tillage system, associated with liming and nitrogen fertilization, on the crop yields and chemical properties of a very clayey Oxisol in the South of Brazil. A randomized complete block design in split-split plots was used, with two soil managements (with or without plowing), two liming treatments (with or without the required dose to raise base saturation to 70%), five N doses applied on side-dress (0, 1, 2, 4, and 6 times the recommended amounts), and four replicates. A rotation system was used with corn and soybean in the summer, and with wheat and black oats in the winter. The residual effects of occasional soil tillage in a consolidated no-tillage system do not supplant those of liming applied on soil surface, in periods of water deficit, which subsidizes the recommendation to maintain the system consolidated. Excess N fertilization in no-tillage, with liming applied only on soil surface, may harm wheat yield, acidifying the topsoil and leaching Mg2+ to the subsurface soil layers. Without liming, soil acidification is more intense with N fertilization, which, however, favors the accumulation of organic matter on soil surface in a consolidated no-tillage system.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 456
Author(s):  
Rasa Kimbirauskienė ◽  
Kęstutis Romaneckas ◽  
Vilma Naujokienė ◽  
Aušra Sinkevičienė ◽  
Egidijus Šarauskis ◽  
...  

Soil tillage intensity influences the chemical composition of soil, the distribution of nutrients, and soil physical and mechanical properties, as well as gas flows. The impact of reduced tillage on these indices in faba bean cultivation is still insufficient and requires more analysis on a global scale. This study was carried out at Vytautas Magnus University, Agriculture Academy (Lithuania) in 2016–2018. The aim of the investigation was to establish the influence of the tillage systems on the soil chemical composition, temperature, moisture content, and CO2 respiration in faba bean cultivation limited by the semi-humid subarctic climate. On the basis of a long-term tillage experiment, five tillage systems were tested: deep and shallow moldboard plowing, deep cultivation-chiseling, shallow cultivation-disking, and no-tillage. Results showed that in conditions of plowless tillage systems, the content of precrops’ residues on the topsoil before the spring tillage was 5 to 15 times higher than in plowed plots. It undoubtedly was for the amount of available nutrients in the soil, soil temperature, and moisture content. Plowless and no-tillage systems could initiate an increase in the amount of available nutrients in soil. The highest concentration of chemical elements was found in no-tilled plots. So faba bean crops could largely increase the composition of potassium and total nitrogen and stabilized CO2 respiration from soil during one vegetative period.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 50 ◽  
Author(s):  
Salem Ali ◽  
Luigi Tedone ◽  
Leonardo Verdini ◽  
Eugenio Cazzato ◽  
Giuseppe De Mastro

A field experiment was conducted in Southern Italy to study the response of durum wheat (Triticum turgidum L. var. durum) grain yield and quality traits to a no-tillage (NT) system and different nitrogen N fertilizer rates (30, 60, and 90 kg N ha−1). The NT system was evaluated and compared to conventional (CT) and reduced (RT) tillage within continuous wheat (WW) and faba bean–wheat (FW) crop sequences over 3-years (2010–2012). The results showed a promising grain yield increase (30%) in the last year. The effect of the N rate on protein content was significant, while productive parameters were not significantly influenced due to both weather conditions and the previous crop. Tillage effect was significantly (p ≤ 0.05) positive on grain yield, yield components and quality parameters, especially in NT system, and was more pronounced when accompanied with faba bean in the rotation system. Despite producing a lower grain protein content (13%) compared to other systems, NT produced good semolina quality (with higher hectoliter weight and lower percentage of broken and shriveled grains). This study provides useful information for farmers on how to produce a satisfactory yield and good grain quality with minimum inputs, helping to design sustainable strategies for durum wheat cultivation in the dry regions.


2018 ◽  
Vol 319 (10) ◽  
pp. 40-42
Author(s):  
N.R. Magomedov ◽  
◽  
Z.N. Abdullaev ◽  
N.N. Magomedov ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document