scholarly journals An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1014
Author(s):  
Jie Pi ◽  
Jun Liu ◽  
Kehong Zhou ◽  
Mingyan Qian

When an octopus grasps something, the rigidity of its tentacle can change greatly, which allowing for unlimited freedom, agility, and precision. Inspired by this, a three-finger flexible bionic robot gripper was designed for apple picking. First, a flexible chamber finger was designed to drive the gripper finger to elongate, shorten, and bend, which works through a process of inflating and deflating. Further, we proposed a three-finger mode to achieve two kinds of motion states: grasping and relaxing, by simulating the movement of an octopus grasping at something. In this paper, we evaluated the bending property of the designed flexible bionic gripper through an apple grasping experiment. The experimental results show that the 100.0 g bionic gripper can load an apple with a weight of 246.5~350.0 g and a diameter of 69.0~99.0 mm, and the grasping success rate is 100%. It has a good grasping performance. Compared to other soft grippers, the proposed bionic flexible gripper has the advantages of being lightweight, and having good cushioning, low driving air pressure, and a strong grasping force.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fei Yao

The previous encryption methods of hospital financial data have the problem of overburden. Therefore, a research study on hybrid encryption of hospital financial data based on Noekeon algorithm is proposed. From the basic principles of the Noekeon algorithm and the application and implementation of the Noekeon algorithm, a hybrid encryption scheme for hospital financial data based on the Noekeon algorithm is designed. In order to improve the security of the encryption system, the RSA algorithm is used to encrypt the encrypted content twice. The hybrid algorithm realizes the hybrid encryption of the hospital's financial data. Finally, a hybrid encryption system for hospital financial data based on Noekeon algorithm is designed. Experimental results show that this method has a higher success rate and better comprehensive performance. It not only improves the encryption efficiency of hospital financial data but also enhances the security of hospital financial data, which has greater application value.


1985 ◽  
Vol 6 ◽  
pp. 222-224 ◽  
Author(s):  
T. Gonda ◽  
H. Gomi

The morphology of snow crystals growing at a low temperature has been experimentally studied. The habit and the morphological instability of the crystals vary remarkably with air pressure. In addition, the morphological instability of the crystals depends not only on air pressure but also on supersaturation, crystal size, the ratio of growth rates and the ratio of axial lengths. It is supposed from the experimental results that long prisms with small skeletal structures forming at low supersaturation are precipitating in polar regions.


Author(s):  
D. Chen ◽  
P. Huang

In the present paper, air pressure and temperature on the interface of the polymer matrix composite (PMC) brake pads are measured by disc brake under braking condition, and their influences are studied as well. The experimental results show that the air temperature peak is not as high as that on the surface. The air pressure of the interface varies with the applied load. The air pressure is negative under the small applied load, but positive under the large applied load. The analysis of the experimental results shows that the phenomena are caused by the friction heat and the rotate disc. Since the air pressure is very small comparing with applied load, it influences on the friction coefficient slightly. But, the negative air pressure of the interface increases the chance of the drag friction in the non-braking mode for disc brakes.


Author(s):  
J. Y. Kim

For successful assembly of deformable parts, information about their deformation and possible misalignments between the holes and their respective mating parts is essential. Such information can be mainly acquired from visual sensors. In this paper, part deformation and misalignment in cylindrical peg-in-hole tasks are measured by using a visual sensing system. First, the configuration and the specifications of the system, such as resolution, are described. Next, a series of experiments to measure the position of an arbitrary point are performed and its measurement accuracy is investigated. Then, an algorithm to estimate the centre-line and deformation of a cylindrical peg and an algorithm to divide and recognize a peg and a hole separately in an image are presented. On the basis of these algorithms, a series of experiments to measure part shape as part deformation are performed. Finally, an algorithm to select two views from the four on the image plane and an algorithm to estimate the centre of an occluded hole are presented. On the basis of these algorithms, a series of experiments to measure misalignment are performed. Experimental results show that the errors in measuring part deformation are approximately less than five or seven times the standard resolution of the system, and the errors in measuring misalignment are less than three or four times the standard resolution. Thereby, the system and the proposed algorithms are effective in measuring part deformation and misalignment and will dramatically increase the success rate in deformable assembly operations.


2021 ◽  
Vol 64 (2) ◽  
pp. 565-575
Author(s):  
Mingsen Huang ◽  
Xiaohu Jiang ◽  
Long He ◽  
Daeun Choi ◽  
John Pecchia ◽  
...  

HighlightsA robotic mushroom picking mechanism was developed, including positioning, picking, and stipe trimming.The picking end-effector was designed based on a bending motion around the stipe-substrate joint.The overall success rate of the developed picking mechanism reached 91.4%.Acting time and air pressure for the suction cup were studied in mushroom bruise level tests.Abstract. Button mushroom (Agaricus bisporus) harvesting mainly relies on costly manpower, which is time-consuming and labor-intensive. Robotic harvesting is an alternative method to address this challenge. In this study, a robotic mushroom picking mechanism was designed, including a picking end-effector based on a bending motion, a four degree-of-freedom (DoF) positioning end-effector for moving the picking end-effector, a mushroom stipe trimming end-effector, and an electro-pneumatic control system. A laboratory-scale prototype was fabricated to validate the performance of the mechanism. Bruise tests on the mushroom caps were also conducted to analyze the influence of air pressure and acting time of the suction cup on bruise level. The test results showed that the picking end-effector was successfully positioned to the target locations. The success rate of the picking end-effector was 90% at first pick and increased to 94.2% after second pick. The main reason for the failures was inclined growing condition of those mushrooms, resulting in difficulties in engaging the mushroom cap with the suction cup facing straight downward. The trimming end-effector achieved a success rate of 97% overall. The bruise tests indicated that the air pressure was the main factor affecting the bruise level, compared to the suction cup acting time, and an optimized suction cup may help to alleviate the bruise damage. The laboratory test results indicated that the developed picking mechanism has potential to be implemented in automatic mushroom harvesting. Keywords: Bruise test, End-effector, Mushroom, Robotic harvesting.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
Guoxuan Li ◽  
Chi Zhang ◽  
Wenzeng Zhang ◽  
Zhenguo Sun ◽  
Qiang Chen

This paper presents a novel under-actuated (UA) finger with first coupled and secondly self-adaptive (COSA) grasping mode. COSA fingers can adaptively grasp objects with different sizes and shapes while its motions during grasping are anthropopathic. Until now there are two COSA mechanisms available and they are both direct parallel combinations of coupled mechanism and self-adaptive mechanism. These kind of direct combinations lead to complex mechanical structure and high power consumption. This paper proposes a novel single-route transmission mechanism for COSA grasping mode, S-coupled and directly self-adaptive (CDSA) mechanism for short. Compared with available COSA mechanisms, the S-CDSA mechanism has simpler structure and higher grasping force. Design of 2-joint S-CDSA finger is introduced in this paper. Force analysis for 2-joint S-CDSA finger is given. Furthermore, a 2-joint S-CDSA finger is manufactured. The force analysis and experimental results show that the novel S-CDSA mechanism is effective.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1057
Author(s):  
Lieping Zhang ◽  
Liu Tang ◽  
Shenglan Zhang ◽  
Zhengzhong Wang ◽  
Xianhao Shen ◽  
...  

Directing at various problems of the traditional Q-Learning algorithm, such as heavy repetition and disequilibrium of explorations, the reinforcement-exploration strategy was used to replace the decayed ε-greedy strategy in the traditional Q-Learning algorithm, and thus a novel self-adaptive reinforcement-exploration Q-Learning (SARE-Q) algorithm was proposed. First, the concept of behavior utility trace was introduced in the proposed algorithm, and the probability for each action to be chosen was adjusted according to the behavior utility trace, so as to improve the efficiency of exploration. Second, the attenuation process of exploration factor ε was designed into two phases, where the first phase centered on the exploration and the second one transited the focus from the exploration into utilization, and the exploration rate was dynamically adjusted according to the success rate. Finally, by establishing a list of state access times, the exploration factor of the current state is adaptively adjusted according to the number of times the state is accessed. The symmetric grid map environment was established via OpenAI Gym platform to carry out the symmetrical simulation experiments on the Q-Learning algorithm, self-adaptive Q-Learning (SA-Q) algorithm and SARE-Q algorithm. The experimental results show that the proposed algorithm has obvious advantages over the first two algorithms in the average number of turning times, average inside success rate, and number of times with the shortest planned route.


Author(s):  
Hyun Jun Park ◽  
Kwang Baek Kim

Most existing object detection methods use features such as color, shape, and contour. If there are no consistent features can be used, we need a new object detection method. Therefore, in this paper, we propose a new method for estimating the probability that an object can be located for object detection and generating an object location probability map using only brightness in a gray image. To evaluate the performance of the proposed method, we applied it to gallbladder detection. Experimental results showed 98.02% success rate for gallbladder detection in ultrasonogram. Therefore, the proposed method accurately estimates the object location probability and effectively detected gallbladder.


SPIN ◽  
2021 ◽  
pp. 2140003
Author(s):  
Wei Zi ◽  
Shuai Yang ◽  
Cheng Guo ◽  
Xiaoming Sun

Unstructured searching, which is to find the marked element from a given unstructured data set, is a widely studied problem in computer science. It is well known that Grover algorithm provides a quadratic speedup to solve unstructured search problem compared with the classical algorithm. This algorithm has received a lot of attention due to the strong versatility. In this manuscript, we report experimental results of searching a unique target from 16 elements on five different quantum devices of IBM quantum Experience (IBMQ). We first implement the original Grover algorithm on these devices. However, the experiment probability of success of finding the correct target is almost the same as random choice. We then optimize the quantum circuit size of the search algorithm. The oracle operator and diffusion operator are two of the most costly operators in Grover algorithm. For the 16-element quantum search algorithm, both the oracle operator and diffusion operator consist of a triple controlled [Formula: see text] gate ([Formula: see text]) and some single-qubit gates. So we optimize the implementation of the [Formula: see text] gate according to the qubits layout of different quantum devices. On the ibmq_santiago, the experimental success rate of the 16-element quantum search algorithm is increased to [Formula: see text] by the optimization, which is better than all the published experiments implemented on IBMQ devices. For other IBMQ devices, the experimental success rate of 16-element quantum search also has been significantly improved. We then try to further reduce the size of the quantum circuit by modifying the Grover algorithm, with a tolerable loss of the theoretical success probability. On ibmq_quito, the experimental success rate is further improved from 25.23% to 27.56% after optimization. These experimental results show the importance of circuit optimization and algorithm optimization in the Noisy-Intermediate-Scale Quantum (NISQ) era.


1985 ◽  
Vol 6 ◽  
pp. 222-224 ◽  
Author(s):  
T. Gonda ◽  
H. Gomi

The morphology of snow crystals growing at a low temperature has been experimentally studied. The habit and the morphological instability of the crystals vary remarkably with air pressure. In addition, the morphological instability of the crystals depends not only on air pressure but also on supersaturation, crystal size, the ratio of growth rates and the ratio of axial lengths. It is supposed from the experimental results that long prisms with small skeletal structures forming at low supersaturation are precipitating in polar regions.


Sign in / Sign up

Export Citation Format

Share Document