scholarly journals Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Shengwei Zhang ◽  
Jun Fu ◽  
Ruiyu Zhang ◽  
Yan Zhang ◽  
Hongfang Yuan

The mechanical properties of agricultural materials can provide the basis for the design and optimisation of agricultural machinery. There are currently very few studies on the mechanical properties of tiger nut tubers, which is not conducive to the design and development of machinery for their harvesting and processing. To obtain the mechanical parameters of tiger nut tubers, this study investigated the effects of variety (Zhong Yousha 1 and Zhong Yousha 2), moisture content (8%, 16%, 24%, 32% and 40%), contact material (steel, aluminium, plexiglass and polyurethane), release height (170 mm, 220 mm, 270 mm and 320 mm), loading speed (5 mm/min, 10 mm/min, 15 mm/min and 20 mm/min), compression direction (vertical and horizontal) on the friction, collision and compression mechanical properties of the tubers. The results were as follows: Both moisture content and contact material had a significant effect (p < 0.01) on the sliding friction coefficient (0.405–0.652) of the tubers; both variety and moisture content had a significant effect (p < 0.01) on the angle of repose (27.96–36.09°); contact material, moisture content, release height and variety all had a significant effect (p < 0.01) on the collision recovery coefficient (0.376–0.672) of tubers; variety, loading speed, moisture content and compression direction all had significant effects (p < 0.01) on the damage force (87.54–214.48 N), deformation (1.25–6.12 mm) and damage energy (82.38–351.08 mJ) of the tubers; only moisture content and compression direction had significant effects (p < 0.01) on the apparent elastic modulus (12.17–120.88 MPa) of the tubers. The results of this study can provide a reference for the design and optimisation of machinery for the harvesting and processing of tiger nut tubers.

2013 ◽  
Vol 2 (6) ◽  
pp. 24
Author(s):  
A. S. Oyerinde ◽  
A. P. Olalusi

<p>The effect of moisture content on some physical and mechanical properties of two varieties of tigernuts (<em>Cyperus esculentus</em>) was investigated. These properties include: geometric dimensions, linear dimensions, 1000 tuber weight, bulk density, tuber size, sphericity, angle of repose, porosity, coefficient of static friction and compressive strength. The moisture content levels used were 20, 25, 30, 35 and 40% wet basis (wb), and the two tigernut varieties used were yellow and brown types. The linear dimension, geometric diameter, sphericity, 1000- tuber weight, bulk density and angle of repose in both varieties increased with increasing moisture content. The average length, width and thickness of the yellow variety increases more than the brown variety at the determined moisture contents. True density of the yellow variety increased while the brown variety decreased with increase in moisture content. The porosity of the yellow variety reduces with increase in moisture content from 45.95 at 20% mc to 42.4 at 40% mc, while the brown variety decreased from 42.72 at 20% mc to 30.77 at 40% moisture content. The yellow variety had bigger size tubers than the brown variety and this has serious implications in packing, handling and transportation issues.</p>


2016 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mohammad Hossein Nadian ◽  
Mohammad Hossein Abbaspour-fard

Abstract The effect of moisture content on some properties of two varieties (Meymeh and Maragheh) of Russian olives was studied. The physical and mechanical properties including: dimensions, geometric mean diameter, thousand mass, volume, sphericity, surface area, true and bulk densities, porosity, angle of repose, coefficient of friction, rupture force, and rupture energy. The changes of moisture content levels from 17% to 25% (w.b.) indicated a statistically significant effect on all studied physical properties, except bulk density for Russian olive fruits. Shearing force was applied to the fruit using a testing machine in double shear mode. Shear strength and shearing energy increased with increase of loading rate; however, they were higher in Meymeh variety than Maragheh variety. Therefore, the lowest loading rate, with up to about 10 mm/min is desirable to design a suitable pulverizing mill in the herbal medicine industries.


2021 ◽  
pp. 109-118
Author(s):  
Wulantuya ◽  
Wuyuntana ◽  
Hongbo Wang ◽  
Wenbin Guo ◽  
Chunguang Wang ◽  
...  

In order to reduce the power consumption of screw conveyor and to improve the productivity, this study investigated such mechanical characteristics of rubbed maize straw as coefficient of sliding friction, angle of repose, internal friction coefficient, cohesion, flow function value and compressible coefficient with respect to its moisture content and density. An experiment was designed and consists of a sliding friction characteristic test-bed, a direct shear apparatus, a self-made device with adjustable density and compression. The results showed that: the coefficient of sliding friction increases with the increase of moisture content and density; the angle of repose and internal friction coefficient each increases with increasing moisture content respectively; there is no significant effect between the moisture content and the cohesion of rubbed maize straw; the flow function value goes up with the increase of the moisture content; also the increase of the moisture content leads to the increased bulk density due to the reduced materials gap and the increased compression coefficient, which makes it hard to compress. The equation of pressure and density was found, and it is suitable for the analysis of compression characteristic of rubbed maize straw. The research results lay a theoretical foundation and a basis for the further study on mechanical properties of maize straw.


2014 ◽  
Vol 4 (1) ◽  
pp. 21-30
Author(s):  
Yuwana Yuwana ◽  
Evanila Silvia ◽  
Bosman Sidebang

This research aimed to determine relationships between weight and several physic-mechanical properties of coffee grains. Grains having 12.2% (wet basis) moisture content in average, originated from cherries of different ripening levels identified by green, yellow, red and deep red in colors were used for experiment. Research used regresi linear analysis. Results of experiment indicated that weight of grains positively correlated to length, width, thickness and frontal area with very high values of determination coefficient. Weight of grains correlated positively to sphericity and negatively to porosity. Weight of grains originated from green and red cherries had positive correlation with density whereas weight of grains originated from yellow and deep red cherries possessed no correlation with density. Weight of grains from yellow, red and deep red cherries had negative correlation with true density in contrast weight of grains from green cherries had positive correlation with true density. There were no reliable trend concerning the relationships between weight of grains and coefficient of static friction and angle of repose.


AGROINTEK ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 921-931
Author(s):  
Agustami Sitorus ◽  
Devianti Devianti ◽  
Ramayanty Bulan

The physical and mechanical properties of the material to be processed are fundamental and continue to be a challenge for researchers to design a machine appropriately. Studies of the soybean engineering properties have not been widely highlighted and reviewed. This makes researchers and engineers of soybean processing machines still have to search through experimentation or read deeply through scientific papers before applying it. Therefore, this paper presents highlights and reviews of studies related to the measurement and modelling of soybean engineering properties. The objective is to study methodologies uses and identify future research directions to get a result in more accuracy. Several papers are searched from various search engines for scientific articles that are available online. Some keywords and a combination of keywords used in the search process are “physical properties”, “mechanical properties”, “soybean grains” and “moisture-dependent”. The results show that ten scientific papers are strictly related to the measurement and modelling of the engineering properties of soybean. In general, the documents found were in the period 1993 to 2012. The research paper investigated the engineering properties of soybean in the moisture content ranges from 6.7% (d.b.) to 49.7% (d.b.). The widely studied physical properties are diameter, surface area, roundness, the weight of 1000 soybeans, bulk density, and true density associated with moisture content. Mechanical parameters investigated include friction coefficient, angle of repose, terminal velocity, angle of internal friction, rupture force, and rupture energy. On the one hand, some of the engineering properties of soybeans that have not yet been discovered are thermal, optical, and aerodynamic properties. On the other hand, the effect of soaking and blanching on changes in the engineering properties of soybean (physical, mechanical, thermal, optical, and aerodynamic) has not been done in-depth. Besides that, most of the soybean processing agro-industry requires engineering properties of soybean to be able to design their machines more precisely. One of the agro-industries that need data on the study results of the nature of engineering with these treatments is the tofu processing industry.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3567 ◽  
Author(s):  
Mateusz Stasiak ◽  
Marek Molenda ◽  
Maciej Bańda ◽  
Józef Horabik ◽  
Joanna Wiącek ◽  
...  

Knowledge on the mechanical properties of granular biomass is important for the design and efficient operation of equipment used for handling, storage, and processing. Their mechanical properties are used as a measure of material quality. In this study, the mechanical properties of granular biomass obtained from pines (sawdust, shavings, long shavings, and pellets) were determined under a moisture content range of 10–50%. The coefficient of sliding friction µ of four construction materials was determined using a 210-mm-diameter direct shear tester (Jenike’s shear box). To measure the shear resistance of the biomass materials (represented as torque T), a prototype vane tester was constructed. The characteristics of shear resistance with respect to time T(t) were determined for material samples under normal pressure p ranging from 5 to 30 kPa and a vane rotation rate of 3 rpm. Measurements were performed for five geometries of the rotor, reflecting typical deformation conditions encountered in the processing of granular biomass. The coefficient of sliding friction was found to be affected by the type of material, moisture content, and normal compressive pressure. Depending on the biomass material, the highest µ, which ranged from 0.50 to 0.62, was obtained for black steel, whereas the lowest µ, which ranged from 0.27 to 0.52, was obtained for aluminum. The lowest coefficient of sliding friction was observed for dry materials and high normal pressure. The torque T was observed to be affected by the rotor shape, material, normal pressure, and moisture content. The parameters presented provide information useful for the design of transport equipment and processing of granular wood biomass.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Sign in / Sign up

Export Citation Format

Share Document