scholarly journals A REVIEW ON THE ENGINEERING PROPERTIES OF SOYBEAN TO SUPPORT THE TOFU AGRO-INDUSTRIAL MACHINERY DEVELOPMENT AND IMPORTANT HIGHLIGHTS

AGROINTEK ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 921-931
Author(s):  
Agustami Sitorus ◽  
Devianti Devianti ◽  
Ramayanty Bulan

The physical and mechanical properties of the material to be processed are fundamental and continue to be a challenge for researchers to design a machine appropriately. Studies of the soybean engineering properties have not been widely highlighted and reviewed. This makes researchers and engineers of soybean processing machines still have to search through experimentation or read deeply through scientific papers before applying it. Therefore, this paper presents highlights and reviews of studies related to the measurement and modelling of soybean engineering properties. The objective is to study methodologies uses and identify future research directions to get a result in more accuracy. Several papers are searched from various search engines for scientific articles that are available online. Some keywords and a combination of keywords used in the search process are “physical properties”, “mechanical properties”, “soybean grains” and “moisture-dependent”. The results show that ten scientific papers are strictly related to the measurement and modelling of the engineering properties of soybean. In general, the documents found were in the period 1993 to 2012. The research paper investigated the engineering properties of soybean in the moisture content ranges from 6.7% (d.b.) to 49.7% (d.b.). The widely studied physical properties are diameter, surface area, roundness, the weight of 1000 soybeans, bulk density, and true density associated with moisture content. Mechanical parameters investigated include friction coefficient, angle of repose, terminal velocity, angle of internal friction, rupture force, and rupture energy. On the one hand, some of the engineering properties of soybeans that have not yet been discovered are thermal, optical, and aerodynamic properties. On the other hand, the effect of soaking and blanching on changes in the engineering properties of soybean (physical, mechanical, thermal, optical, and aerodynamic) has not been done in-depth. Besides that, most of the soybean processing agro-industry requires engineering properties of soybean to be able to design their machines more precisely. One of the agro-industries that need data on the study results of the nature of engineering with these treatments is the tofu processing industry.

2020 ◽  
Vol 8 (3) ◽  
pp. 232-238
Author(s):  
Dawn C.P. Ambrose

Multiplier onion (Allium cepa L. var aggregatum. Don.) is mainly used for its unique flavour in seasoning dishes. The unpeeled onions are processed at farm level by means of primary processing and by secondary processing various products like paste, flakes, powder could be produced from peeled onions. For the design of processing and handling equipment knowledge of engineering properties is essential. The engineering properties of peeled and unpeeled multiplier onion were determined. The average values of the physical properties of unpeeled onion were recorded for bulk density and true density as 636.621 and 1526.825 kg/m3 respectively. Similarly for peeled onions, the bulk and true density were 627.03 and 1108.74 kg/m3 respectively. The moisture present in peeled and unpeeled onion was 77.66 % and 74.43% (w.b) respectively. The TSS of multiplier onion was found to be 20° Brix for both peeled and unpeeled samples. The colour values were also measured using colour flex meter for the peeled and unpeeled onions. The frictional properties including coefficient of friction, filling and emptying angle of repose were also measured. Mechanical properties were determined by using a texture analyser. The firmness was measured in terms of penetrating force and crushing strength which were recorded to be 8.59 N and 124.93 N respectively for peeled and 12.00 N and 138.35 N respectively for unpeeled onions.


Author(s):  
Tega A Emurigho ◽  
Canice O.O Kabuo ◽  
Arinze N Ifegbo

The physical and engineering properties of fresh and dried tiger nut (Cyperus esculentus) were determined at moisture content of 41.20% and 16.40% on wet basis respectively. The mean values for the three principal axes (length, width and thickness) were 9.52mm, 8.16mm, and 8.16mm for fresh tiger nut and 9.14mm, 7.72mm and 8.03mm for dried tiger nut respectively, showing a decrease with decrease in moisture content and was significantly different at p?0.05. The mean values of the bulk density, true density and porosity of both fresh and dried tiger nut were 0.59g/cm3 , 0.97g/cm3 , 40.61 and 0.58g/cm3, 0.94g/cm3 , 40.35 respectively and were not significantly different at p?0.05. The mean angle of repose and coefficient of static friction over formica, stainless steel, glass and plywood surfaces of fresh tiger nut were 50.11o , 2.73, 2.45, 2.22 and 1.77 while that of dried tiger nut were 48.23o , 2.41, 2.03, 2.11 and 2.00 respectively. The mean rupture force increased with compression force of 90.08N on the major axis to 116.88N for fresh tiger nut and from 120.55N to 161.10N for dried tiger nut and were significantly different at p?0.05. These properties determined are necessary in the design and fabrication of hoppers, conveyor equipment and the force tiger nut can withstand before it is ruptured.


1977 ◽  
Vol 19 (81) ◽  
pp. 499-531 ◽  
Author(s):  
J. Schwarz ◽  
W. F. Weeks

AbstractAs the continental shelves of the Arctic become important as source areas for the oil and minerals required by human society, sea ice becomes an increasing challenge to engineers. The present paper starts with a consideration of the different fields of engineering which require information on sea ice with the tasks ranging from the design of ice-breaking ships to Arctic drilling platforms and man-made ice islands. Then the structure of sea ice is described as it influences the observed variations in physical properties. Next the status of our knowledge of the physical properties important to engineering is reviewed. Properties discussed include mechanical properties (compressive, tensile, shear and flexural strengths; dynamic and static elastic moduli; Poisson’s ratio), friction and adhesion, thermal properties (specific and latent heats, thermal conductivity and diffusivity, density) and finally electromagnetic properties (dielectric permittivity and loss, resistivity). Particular attention is given to parameters such as temperature, strain-rate, brine volume, and loading direction as they affect property variations. Gaps, contradictions in the data, and inadequacies in testing techniques are pointed out. Finally suggestions are made for future research, especially for more basic laboratory studies designed to provide the data base upon which further theoretical developments as well as field studies can be built.


2013 ◽  
Vol 2 (6) ◽  
pp. 24
Author(s):  
A. S. Oyerinde ◽  
A. P. Olalusi

<p>The effect of moisture content on some physical and mechanical properties of two varieties of tigernuts (<em>Cyperus esculentus</em>) was investigated. These properties include: geometric dimensions, linear dimensions, 1000 tuber weight, bulk density, tuber size, sphericity, angle of repose, porosity, coefficient of static friction and compressive strength. The moisture content levels used were 20, 25, 30, 35 and 40% wet basis (wb), and the two tigernut varieties used were yellow and brown types. The linear dimension, geometric diameter, sphericity, 1000- tuber weight, bulk density and angle of repose in both varieties increased with increasing moisture content. The average length, width and thickness of the yellow variety increases more than the brown variety at the determined moisture contents. True density of the yellow variety increased while the brown variety decreased with increase in moisture content. The porosity of the yellow variety reduces with increase in moisture content from 45.95 at 20% mc to 42.4 at 40% mc, while the brown variety decreased from 42.72 at 20% mc to 30.77 at 40% moisture content. The yellow variety had bigger size tubers than the brown variety and this has serious implications in packing, handling and transportation issues.</p>


2013 ◽  
Vol 27 (1) ◽  
pp. 107-109 ◽  
Author(s):  
F. Jaliliantabar ◽  
A.N. Lorestani ◽  
R. Gholami

Abstract Some physical properties of kumquat were investigated. Physical properties which were measured included fruit dimensions, mass, volume, projected area, density, geometric mean diameter, sphericity and surface area. Bulk density, porosity and also packaging coefficient were calculated. Mechanical properties such as the elasticity modulus, rupture force and energy required for initial rupture have been determined. The experiments were carried out at moisture content of 82.6% (w.b.). The results show that the kumquat fruit is one of the smallest fruit in the citrus family.


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 99-106 ◽  
Author(s):  
S.M.T. Gharibzahedi ◽  
V. Etemad ◽  
J. Mirarab-Razi ◽  
M. Fos hat

Moisture-dependent engineering properties of pine nut were studied at 6.3, 8.2, 10.8, 14.5, 18.9, and 20.1% moisture content (dry basis). The length, width, thickness, and geometric mean diameter increased significantly (P &lt; 0.05) from 21.75 to 21.85 mm, 7.39 to 7.47 mm, 6.07 to 6.14 mm, and 9.89 to 9.98 mm, respectively, with an increase in moisture content from 6.3% to 20.1%, whereas the increase in sphericity from 45.49% to 45.69% was not significant. Similarly, thousand seed mass, true density, porosity, terminal velocity, and angle of repose increased (P &lt; 0.05) from 0.85 to 0.93 kg, 1043.3 to 1071 kg/m3, 41.31% to 44.57%, 8.67 to 8.83 m/s, and 35.4&deg; to 39&deg;, respectively, with an increase in moisture content under the experimental condition. Moreover, the bulk density decreased significantly (P &lt; 0.05) from 612.3 to 593.6 kg/m3. Coefficient of static friction increased (P &lt; 0.05) from 0.251 to 0.292, 0.241 to 0.271, 0.227 to 0.262, and 0.218 to 0.247 on plywood, galvanized iron sheet, stainless steel, and glass surfaces, respectively, with an increase in moisture content from 6.3% to 20.1%.


2016 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mohammad Hossein Nadian ◽  
Mohammad Hossein Abbaspour-fard

Abstract The effect of moisture content on some properties of two varieties (Meymeh and Maragheh) of Russian olives was studied. The physical and mechanical properties including: dimensions, geometric mean diameter, thousand mass, volume, sphericity, surface area, true and bulk densities, porosity, angle of repose, coefficient of friction, rupture force, and rupture energy. The changes of moisture content levels from 17% to 25% (w.b.) indicated a statistically significant effect on all studied physical properties, except bulk density for Russian olive fruits. Shearing force was applied to the fruit using a testing machine in double shear mode. Shear strength and shearing energy increased with increase of loading rate; however, they were higher in Meymeh variety than Maragheh variety. Therefore, the lowest loading rate, with up to about 10 mm/min is desirable to design a suitable pulverizing mill in the herbal medicine industries.


2015 ◽  
Vol 47 (4) ◽  
pp. 23-40
Author(s):  
F. Shahbazi

Abstract Several physical properties of three safflower cultivars (IL-111, LRV51-51 and Zarghan279) at moisture contents of 10, 15, 20 and 25% were determined and compared. All the linear dimensions, geometric mean diameter and sphericity of safflower seeds increase linearly with increase in seed moisture content. The values of geometric properties were higher for IL-111cultivar than the LRV51-51 and Zarghan279 cultivars. The values of the bulk densities decreased, whereas the thousand seeds mass, true density and porosity were increased with increase in seed moisture content. All the gravimetric properties for the three cultivars of safflower were significantly different (p<0.05). The values of the terminal velocity for all cultivars were significantly increased as the moisture content increased. The terminal velocity for the three cultivars of safflower were significantly different (p<0.05). On the two different surfaces, the coefficient of static friction of the IL-111 cultivar was significantly greater than that of the other cultivars. The static coefficient of friction was higher on plywood and lower for galvanized steel. The values of the angle of repose increased with increase of the moisture content. The values of the angle of repose for Zarghan279 cultivar were higher than the IL-111, LRV51-51 cultivars.


2017 ◽  
Vol 4 (1) ◽  
pp. 54
Author(s):  
Noor Mirad Sari ◽  
Trisnu Satriadi ◽  
Muhammad Safi’i

This research aims to utilize cinnamon (Cinnamomum burmanii) and wood durian (Durio zibethinus) which is an unused wood or waste, a product that has economic value. The purpose of this study was to determine the physical properties (moisture content, density) and mechanical (MoE, MoR , and the efficiency of the connection) continued boards cinnamon (Cinnamomum burmanii) and wood durian (Durio zibethinus). Connecting board manufacturing is done with menjari method (finger joint), as well as testing done of testing physical properties (moisture content, density)on the mechanical properties of wood intact and (MoE, MoR, the efficiency of the connection) to connect the board. Board continued to use Poly vinyl acetate (PVAC) as adhesive. This study uses a completely randomized design (CRD) with 2 types of wood, 3 treatments and 3 repetitions. Results of this indicate that the use of a waste can produce a quality produst and has economic value.  The results of all these studies show that connecting boards made from cinnamom cinnamom + MM has elasticity (MoE) is high but less well on the test and also the level of efficiency MoR connection. While on board grafting wood + wood durian durian (DD) has a current MoE and MoR efficiency is low but good connection. Boards cinnamon +connection durian wood (MD) has an elasticity (MoE) is low but has a high MoR and efficiency is very good connection. From the results obtained that the board continued the MD who has good quality MM and DD. Further research based on other types, concentrations and types of adhesive connection method.Penelitian ini bertujuan untuk dapat memanfaatkan kayu manis (Cinnamomum burmanii) dan kayu durian (Durio zibethinus) yang merupakan kayu yang tidak terpakai atau limbah, menjadi produk yang memiliki nilai ekonomis. Tujuan dari penelitian ini adalah mengetahui sifat fisis (kaar air, berat jenis) dan mekanis (MoE, MoR, dan efisiensi sambungan) papan sambung kayu manis dan kayu durian. Pembuatan papan sambung dilakukan dengan metode menjari (finger joint), serta pengujian yang dilakukan yaitu pengujian sifat fisis (kadar air, berat jenis) pada kayu utuh dan sifat mekanis (MoE, MoR, efisiensi sambungan) pada papan sambung. Papan sambung dengan menggunakan Poly vinyl acetate (PVAc) sebagai perekatnya. Penelitian ini menggunakan rancangan acak lengkap (RAL) dengan 2 jenis kayu, 3 perlakuan dan 3 pengulangan. Hasil penelitian ini menunjukkan bahwa pemanfaatan suatu limbah bisa menghasilkan suatu produk yang berkualitas dan memiliki nilai ekonomis. Hasil dari semua penelitian ini menunjukkan papan sambung yang terbuat dari kayu manis + kayu manis MM memiliki elastisitas (MoE) yang tinggi tapi kurang baik pada uji MoR dan juga tingkat efisiensi sambungannya. Sedangkan pada papan sambung kayu durian + kayu durian (DD) memiliki MoE yang sedang dan MoR yang rendah tapi efisiensi sambungan baik. Papan sambung kayu manis + kayu durian (MD) memiliki elastisitas (MoE) yang rendah tapi memiliki MoR yang tinggi serta efisiensi sambungan sangat baik. Dari hasil yang diperoleh bahwa papan sambung MD yang memiliki kualitas yang baik dibandingkan MM dan DD. Penelitian lebih lanjut berdasarkan dari jenis lainnya, konsentrasi jenis perekat dan metode sambungan.


Author(s):  
Bhabani Shankar Dash ◽  
Sangram Keshari Swain ◽  
Debaraj Behera ◽  
Kalpana Rayaguru ◽  
Megha Meshram

Background: Green gram is a popular pulse crop in India (with 2.02 MT production over a cultivated area of 4.26 Mha) and Odisha (20.8 lakh ha area with a yield of 10.60 lakh tonnes). The information on the engineering properties and its behavioural changes with moisture content is vital for handling and designing of different agricultural processing equipment. Methods: This work mainly focused on studying green gram variety’s (Sujata) engineering properties at five different moisture levels (within a moisture range of 10.58 to 45.45% (d.b.). Standard methods and procedures were followed in the study and the output results were compared with previous research work to justify the variation or anomaly in some cases. The curve estimation method (regression analysis) was followed to find the best-fit curve and equation for the parameters studied. Result: The geometric mean diameter (GMD) of grain increased from 3.75 to 4.12 mm within the moisture content (MC) range and the variation was statistically significant (p less than 0.05). Sphericity and surface area varied significantly from 0.83 to 0.82 and 44.13 to 53.45 mm2, respectively, within the range of moisture contents studied with a high correlation among the data. Mass of thousand grains augmented (44.13 to 53.45 g) with a rise in MC and the data followed logarithmic and inverse curves. Bulk and true densities of green gram declined significantly from 860 to 670 kg m-3 and 1330 to 1240 kg m-3 with an increase in the moisture content. The porosity of green gram increased significantly from 35.75% to 46.38% and the terminal velocity raised from 9.20 m s-1 to 11.10 m s-1 with an increase in MC. The dynamic angle of repose increased significantly from 30.95 to 46.57o with MC. A significant variation in the coefficient of internal friction (0.78 to 0.90) was observed for the grains. The coefficient of static friction of grain increased significantly for different surfaces (MS, SS, Plywood and GI) with a rise in MC. The MS surface produced the highest coefficient of static friction and SS had the least. The results confirmed significant effect of MC on all engineering properties of green gram.


Sign in / Sign up

Export Citation Format

Share Document