scholarly journals Effect of Plant Growth Promoting Bacteria on the Growth of Wheat Seedlings Subjected to Phosphate Starvation

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 978
Author(s):  
Mariagrazia P. Cataldi ◽  
Sigrid Heuer ◽  
Tim H. Mauchline ◽  
Mark D. Wilkinson ◽  
Emily Masters-Clark ◽  
...  

Certain phosphorous solubilizing (PSB) and phosphorous mineralizing (PMB) bacteria may improve plant growth by improving nutrient availability. The aim of this work was to evaluate the effect of inoculation with two Bacillus spp. strains, 12A and 25A, on wheat seedlings growth. To this aim, a durum and a bread wheat genotype were grown under controlled conditions in a low P compost medium to evaluate: (i) the effect of the bacterial isolates on plant growth and root system architecture; (ii) the expression of two key genes indicative of the P-starvation response and phosphate (Pi) uptake, TaIPS1 and TaPHT1.6-B1. The results showed that 12A Bacillus sp. significantly increased root length, surface area and biomass. Furthermore, an enhanced shoot dry weight and P content were observed. This might be explained by the capacity of strain 12A to produce indole-3-acetic acid (IAA) in addition to P mineralizing and P solubilizing capability. No effect on plant growth was observed for 25A strain. The semi-quantitative gene expression analysis showed an overall lower expression of TaIPS1 in the inoculated plants and highest expression of TaPHT1.6-B1 in 12A inoculated plants. This suggests that Pi-responsive genes might be useful molecular indicators for the effectiveness of PSB and PMB.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Enriqueta Amora-Lazcano ◽  
Héctor J. Quiroz-González ◽  
Cristofer I. Osornio-Ortega ◽  
Juan A. Cruz-Maya ◽  
Janet Jan-Roblero

Background: Deficiency in sorghum growth in ecosystems of low-nutrient soils has been scarcely studied. This soil deficiency can be overcome by the addition of plant growth-promoting bacteria which increase sorghum growth. Questions and/or Hypotheses: indole acetic acid (IAA) producing and phosphate solubilizing bacteria can promote sorghum growth under nutritional stress. Studied species: Sorghum bicolor (L.) Moench. Study site and dates: Mexico City, 2018. Methods: Of the twelve bacterial strains utilized, three produce IAA (group BI), two strains produce IAA and siderophores (BIS group), four strains produce IAA and solubilize phosphate (BIP group), and three strains produce IAA, solubilize phosphate, and produce siderophores (BIPS group). Hydroponic bioassays and low-nutrient soil bioassay were used. Results: In hydroponic bioassays, for BI and BIS groups, five strains significantly increased the growth parameters with respect to the control, and for the BIP and BIPS groups, two strains promoted stem development and shoot dry weight. In a low-nutrient soil bioassay, Pseudomonas sp. BI-1 (from BI group) was the one that presented the highest percentages 32, 48, 140 and 79 % in stem diameter, height and dry weight of the shoot and dry weight of the root, respectively, followed by the P. mohnii BIPS-10 strain (from BIPS group) that exhibited similar results. Conclusions: IAA producing Pseudomonas strains improve the sorghum growth in a low-nutrient soil and suggest thatPseudomonas sp. BI-1 and P. mohnii BIPS-10 could be used as potential bioinoculants for sorghum.


Author(s):  
D. Miljaković ◽  
J. Marinković ◽  
G. Tamindžić ◽  
V. Đorđević ◽  
M. Ignjatov ◽  
...  

Background: Bacillus spp., known to promote growth and reduce disease of various field and vegetable crops, are frequently found in soils. The objective of the study was to select effective Bacillus spp. isolates with multiple plant growth properties and antifungal activities and to examine their effect on germination of soybean. Methods: Bacterial isolates were screened for production of indole-3-acetic acid (IAA) and siderophores and solubilization of phosphate. The ability of bacterial isolates to inhibit the growth of seven phytopathogenic fungi affecting soybean was determined using a dual plate assay. Bacillus spp. were further selected and examined in a seed germination test. Result: All Bacillus spp. isolates were positive for IAA production, while siderophore production and P-solubilization were observed in 80% and 20% bacterial isolates, respectively. Bacillus spp. exhibited the highest antifungal activity against Diaporthe caulivora, followed by Diaporthe sojae, Diaporthe eres, Diaporthe longicolla and Macrophomina phaseolina and the least antagonistic effect toward Fusarium graminearum and Fusarium subglutinans. Selected isolates of B. subtilis significantly affected final germination, shoot length, root length, shoot dry weight and root dry weight of two soybean cultivars. The most effective Bacillus spp. isolates could be used as potential inoculants for improving soybean productivity.


Author(s):  
Mahmoud Ahmed Touny El-Dabaa ◽  
Hassan Abd-El-Khair

Abstract Background Orobanche crenata is an obligate root parasite belonging to Orbanchaceae. Broomrape causes great damage to the faba bean. Several attempts were applied for controlling parasitic weeds. So, the aim of this work is to study the application of Trichoderma spp. as well as three rhizobacteria species in comparison to herbicidal effect of Glyphosate (Glialka 48% WSC) for controlling broomrape infesting faba bean (Vicia faba). Materials and methods Three pot experiments were carried out in the greenhouse of the National Research Centre, Dokki, Giza, Egypt during two successive winter seasons. Trichoderma inocula were adjusted to 3.6 × 108 propagules/ml and the bacterium inocula were adjusted at 107–109 colony-forming unit (CFU)/ml. All treatments were applied, before 1 week of sowing, at rate of 50 ml per pot in experiments I and II, while 100 ml per pot in experiment III. Results Trichoderma spp. (T. harzianum, T. viride and T. vierns) as well as three rhizobacteria species (Pseudomonas fluorescens, Bacillus subtilis and Bacillus pumilus) enhanced the growth parameters in faba bean plants, i.e. shoot length, shoot fresh weight, shoot dry weight and leaf number in the first experiment when applied without O. crenata infection. In the second experiment, all bio-control could protect plants against O. crenata infection, where it had better juvenile number reduction, than glyphosate after 2 months of application. Both B. subtilis and B. pumilus had the highest reduction to juvenile fresh weight, while their effect was equal to herbicide for juvenile dry weight, respectively. The bio-control agents had high effects until the 4th month, but it was less than that of the herbicide. In experiment III, the bio-control agents could highly reduce the juvenile parameters after 2 months, as well as juvenile fresh weight and juvenile dry weight after 4 months, than the herbicide, respectively. The bio-control agents were effective until 6 months, but less than the herbicide effect. All bio-control treatments highly increased the plant growth parameters, than the herbicide. Conclusion The application of Trichoderma spp. as well as rhizobacteria species could play an important role in controlling broomrape in faba bean as a natural bioherbicide.


2010 ◽  
Vol 56 (No. 12) ◽  
pp. 570-573 ◽  
Author(s):  
D. Egamberdieva

In this study the plant growth-promoting bacteria were analysed for their growth-stimulating effects on two wheat cultivars. The investigations were carried out in pot experiments using calcareous soil. The results showed that bacterial strains Pseudomonas spp. NUU1 and P. fluorescens NUU2 were able to colonize the rhizosphere of both wheat cultivars. Their plant growth-stimulating abilities were affected by wheat cultivars. The bacterial strains Pseudomonas sp. NUU1 and P. fluorescens NUU2 significantly stimulated the shoot and root length and dry weight of wheat cv. Turon, whereas cv. Residence was less affected by bacterial inoculation. The results of our study suggest that inoculation of wheat with Pseudomonas strains can improve plant growth in calcareous soil and it depends upon wheat cultivars. Prior to a selection of good bacterial inoculants, it is recommended to select cultivars that benefit from association with these bacteria.


Author(s):  
Felipe Romero-Perdomo ◽  
Isidro Beltrán ◽  
Jonathan Mendoza-Labrador ◽  
German Estrada-Bonilla ◽  
Ruth Bonilla

The low availability of phosphorus (P) in the soil drastically limits the world productivity of crops such as cotton. In order to contribute sustainably to the solution of this problem, the current study aimed to evaluate the capacity of phosphate-solubilising bacteria to improve plant growth and its relationship with physiological parameters, as well as the shoot P content in cotton plants in a soil with low P availability amended with rock phosphate. The results showed that, of the six plant growth-promoting bacteria strains evaluated under greenhouse conditions, the Rhizobium strain B02 significantly promoted growth, shoot P content and photosynthetic rate. This strain also improved the transpiration rate and the relative content of chlorophyll but without significant differences. Remarkably, Rhizobium sp. B02 had a more significant effect on plant growth compared to the P nutrition. Furthermore, the effect of its inoculation was more pronounced on the roots' growth compared to the shoot. Finally, application of Rhizobium strain B02 showed the capacity to optimize the use of low-solubility fertilizer as the rock phosphate. These findings could be associated with the metabolic activities of plant growth promotion exhibited by phosphate-solubilising strains, such as phosphate solubilisation, production of indole compounds and siderophores synthesis. In conclusion, this research provides evidence of the biotechnological potential of the Rhizobium genus as phosphate-solubilising bacteria with multiple plant growth-promoting activities capable of improving the plant growth and phosphate nutrition of non-leguminous crops such as cotton in soil with low P availability amended with rock phosphate.


2021 ◽  
Author(s):  
Yoshie Hori ◽  
Hiroaki Fujita ◽  
Kei Hiruma ◽  
Kazuhiko Narisawa ◽  
Hirokazu Toju

In natural and agricultural ecosystems, survival and growth of plants depend substantially on microbes in the endosphere and rhizosphere. Although numerous studies have reported the presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a major challenge to understand how sets of microbial species positively or negatively affect plants' performance. By conducting a series of single- and dual-inoculation experiments of 13 endophytic and soil fungi targeting a Brassicaceae plant species, we here evaluated how microbial effects on plants depend on presence/absence of co-occurring microbes. The comparison of single- and dual-inoculation experiments showed that combinations of the fungal isolates with the highest plant-growth promoting effects in single inoculations did not yield highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast, pairs of fungi including small/moderate contributions to plants in single-inoculation contexts showed the greatest effects on plants among the 78 fungal pairs examined. These results on the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of single microbial species/isolates can result in the overestimation or underestimation of microbial functions in multi-species contexts. Because keeping single-microbe systems in outdoor conditions is impractical, designing sets of microbes that can maximize performance of crop plants is an important step for the use of microbial functions in sustainable agriculture.


Author(s):  
Anju Sehrawat ◽  
Aakanksha Khandelwal ◽  
Satyavir Singh Sindhu

Mesorhizobium sp. indirectly promote the growth of plants as a biocontrol agent by inhibiting the growth of pathogens particularly Fusarium wilt of chickpea. Out of 24 Mesorhizobium isolates obtained from chickpea nodules, eight isolates showed antagonistic effect against Fusarium oxysporum. Salinity stress severely affects growth, nodulation and yield of chickpea. Mesorhizobium isolates were tested for their salt tolerance capacity at 1, 2, 4, 6 and 8% NaCl concentrations. Only two Mesorhizobium isolates MCA5 and MCA22 were found salt-tolerant upto 8% of salt concentration. Maximum increase (45.5%) in shoot dry weight was observed by inoculation of isolate MCA20 at 40 days of chickpea growth under chillum jar conditions, whereas isolate MCA23 resulted in 166.2% increase in root dry weight. Likewise, 112.6% increase in shoot dry weight was observed on inoculation of MCA14 isolate at 80th day of observation. Further extensive research is required to understand the mechanism of potential Mesorhizobium isolates of chickpea in controlling Fusarium wilt disease and salt tolerance. Selection of mesorhizobia with twin functional traits (plant growth promoting and biocontrol agent) can be exploited as future biofertilizer in chickpea.


1998 ◽  
Vol 44 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Yoav Bashan

Six strains of Azospirillum belonging to five species of plant growth-promoting bacteria (A. brasilense, A. lipoferum, A. amazonense, A. irakense, and A. halopraeference) did not cause visible disease symptoms on the roots or leaves of tomato, pepper, cotton, and wheat, failed to inhibit seed germination, and did not reduce plant dry weight when seven standard techniques for the inoculation of plant pathogens were used. Similar inoculation conditions with plant pathogens (Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. vesicatoria, Xanthomonas campestris pv. translucens, and Xanthomonas campestris pv. malvacearum) induced typical disease symptoms. None of Azospirillum strains caused the hypersensitive reaction on eggplant, whereas all pathogens did. All Azospirillum strains increased phytoalexin production in all disease-resistant plant species to moderate levels, but the levels were significantly lower than those induced by the compatible pathogens. The various phytoalexins produced in plants had the capacity to inhibit growth of all Azospirillum strains. Azospirillum amazonense, A. irakense, and A. halopraeference had no apparent effect on plant growth, while A. brasilense and A. lipoferum increased the dry weight of all plant species. Under partial mist conditions, all Azospirillum strains were capable of colonizing leaf surfaces (103-107 cfu/g dry weight) regardless of the plant species. These results provide experimental evidence that Azospirillum sp. might be considered safe for the inoculation of several plant species.Key words: Azospirillum, beneficial bacteria, environmental protection, plant inoculation, plant growth-promoting bacteria.


2000 ◽  
Vol 46 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Genrich I Burd ◽  
D George Dixon ◽  
Bernard R Glick

Kluyvera ascorbata SUD165 and a siderophore-overproducing mutant of this bacterium, K. ascorbata SUD165/26, were used to inoculate tomato, canola, and Indian mustard seeds which were then grown in soil for 25-42 days in the presence of either nickel, lead, or zinc. The parameters that were monitored included plant wet and dry weight, protein and chlorophyll content in the plant leaves, and concentration of heavy metal in the plant roots and shoots. As indicated by a decrease in the measured values of these parameters, in all instances, plant growth was inhibited by the presence of the added metal. Both bacterial strains were effective, although not always to a statistically significant extent, at relieving a portion of the growth inhibition caused by the metals. In most cases, the siderophore overproducing mutant K. ascorbata 165/26 exerted a more pronounced effect on plant growth than did the wild-type bacterium K. ascorbata SUD165. The data suggest that the ability of these bacteria to protect plants against the inhibitory effects of high concentrations of nickel, lead, and zinc is related to the bacteria providing the plants with sufficient iron.Key words: phytoremediation, heavy metals, siderophores, Kluyvera ascorbata.


Author(s):  
Cecilio Viega Soares Filho ◽  
Leonardo Aurélio Silva ◽  
Jaqueline Silva Boregio ◽  
Mariangela Hungria ◽  
Adônis Moreira ◽  
...  

Alfalfa (Medicago sativa L.) has high forage yield potential, protein quality, palatability, and digestibility, and low seasonality. The aim of this study was to evaluate the effects of strains of Sinorhizobium meliloti and Azospirillum brasilense on the nutritive content, bromatological composition (crude protein [CP], neutral detergent fiber [NDF], acid detergent fiber [ADF], and in vitro digestibility of dry weight [IVDDW]), and shoot dry weight (SDW), relative chlorophyll index (RCI), number of tillers (NT), plant height (PH), and root dry weight (RDW) and volume (RV), of alfalfa grown in a Typic Ultisol. The experiment consisted of eight combinations of plant-growth promoting bacteria (PGPB). The treatments were as follows: T1:non-inoculated control without N-fertilizer (NI); T2: NI + N-fertilizer, and inoculated with T3: Sinorhizobium (=Ensifer) meliloti SEMIA 116 + N-fertilizer; T4: S. meliloti SEMIA 116 + A. brasilense Ab-V5 + Ab-V6 + N-fertilizer; T5: S. meliloti SEMIA 134 + N-fertilizer; T6: S. meliloti SEMIA 134 + co-inoculation + N-fertilizer; T7: S. meliloti SEMIA 135 + N-fertilizer; and T8: S. meliloti SEMIA 135 + co-inoculation + N-fertilizer. S. meliloti strains are used in commercial inoculants for the alfalfa, and A. brasilense for several non-legumes and legumes in Brazil. The experiment was performed for three successive cuts under greenhouse conditions. Application of N-fertilization increases the production cost, making alfalfa cultivation unviable. Inoculation with three strains of Sinorhizobium meliloti highly promoted alfalfa growth, considering several parameters, including PH, RCI, NT, SDW and RDW, nutritive value, and with an emphasis on RV, and total N content and total N accumulated in shoots and roots. No further increases were observed with the co-inoculation with the PGPB A. brasilense. Studies in field and greenhouse conditions are necessary to verify the benefits of the use of PGPB in the cultivation of alfalfa.


Sign in / Sign up

Export Citation Format

Share Document