scholarly journals Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1147
Author(s):  
Chao-Chen Tang ◽  
Li-Pu Han ◽  
Guang-Hui Xie

A two-year nutrient omission trial was conducted on semiarid wasteland to determine the effects of nitrogen (N), phosphorus (P), and potassium (K) on the chemical composition and theoretical ethanol yield (TEY) of switchgrass (Panicum virgatum L.). The fertilizer treatments were the following: NPK, PK, NK, NP, and no nutrient inputs (CK). Results indicated that the crude protein (CP) content and protein yield of switchgrass aboveground biomass decreased significantly in the PK treatment (N omission) and the CK, compared with the NPK treatment. The omission of N, P, or K did not significantly affect the other feed and energy quality indicators. When averaged across the two years, the neutral- and acid-detergent fiber contents were lower in the NPK and NP treatments, but the CP, dry matter digestibility, dry matter intake, total digestible nutrients, net energy for lactation, and relative feed value were higher, indicating that the suitable application with combination of N and P was helpful to improve the forage quality of switchgrass. In PK and CK treatments, the contents of soluble sugar, cellulose, and hemicellulose were higher but that of ash was lower than that in other three treatments, indicating that no N application meant better quality of switchgrass aboveground biomass for bioethanol production. The TEY at NPK was 2532 L ha−1 in 2015 and 2797 L ha−1 in 2016; in particular, the TEY decreased significantly by 15.1% in PK, 14.7% in NK, 10.5% in NP, and 29.9% in CK in 2016. To conclude, N was the most limiting factor in switchgrass productivity and the combined N, P, and K nutrient supply management strategy is recommended based on the consideration of quality and quantity of switchgrass as forage and bioenergy feedstock on semiarid marginal land.

2014 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Izabela Zawiska ◽  
Piotr Siwek

ABSTRACT The results of two years (2010-2011) of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2) on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1) were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were planted on mulches in the field at a spacing of 50 × 100 cm. The mulch was maintained throughout the growing season. A plot that remained unmulched served as the control. Tomatoes were harvested once a week. The fruits were evaluated for L-ascorbic acid, dry matter, soluble sugars and nitrate content. In 2011, the analysis of the plant material showed that the concentration of L-ascorbic acid was about 23% higher in the tomato fruits harvested from plants grown on biodegradable PLA 61 g m-2 mulch in comparison to the control. A similar effect was demonstrated for the soluble sugar concentration in 2011 for both types of nonwovens.


2011 ◽  
Vol 27 (4) ◽  
pp. 1585-1594 ◽  
Author(s):  
Dj. Karagic ◽  
S. Vasiljevic ◽  
S. Katic ◽  
A. Mikic ◽  
D. Milic ◽  
...  

In order to determine an optimum ratio of vetch and wheat (Triticum aestivum L.) components in their mixture, there has been carried out a four-year trial (autumn 2005 - spring 2009) aimed at the yield and quality of winter vetch haylage. The sowing rate of winter vetch was 120 kg ha-1, while the sowing rate of winter wheat was 0, 15, 20, 25 and 30 kg ha-1. An increased proportion of the cereal in its mixture with vetch significantly decreases the stand lodging, have a positive influence on forage yield, but haylage quality is of a poorer quality. Quality characteristics such as crude protein and lignin content, total digestible nutrients, dry matter intake and relative feed value were highest in monoculture common vetch followed by mixture with the lowest rate of wheat. Neutral detergent fiber content was positively affected by intercropping. There were no significant differences among treatments for acid detergent fiber content, digestible dry matter, and net energy for lactation. The most favorable balance between the haylage yield and quality, as well as the highest CP yield (1482 kg ha-1), was achieved by the mixture of 120 kg ha-1 of the vetch seed and 15 kg ha-1 of wheat.


2011 ◽  
Vol 23 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Maria Gawęda ◽  
Zofia Nizioł-Łukaszewska

Quality of kohlrabi stems (Brassica oleracea var. gongylodes L.) kept in cold storage Two green kohlrabi cultivars, ‘White Delikates’ and ‘Korist’ F1, were kept in cold storage at a temperature of 2°C and a relative humidity of 95%. Natural mass losses were measured at monthly intervals and dry matter content, soluble sugars, L-ascorbic acid and isothiocyanates were analysed. During five months of storage, very low losses of kohlrabi mass were detected. The decrease in dry matter during that time was between 15 and 18%. After a brief increase, soluble sugar content decreased during storage, and in March, 50% of the initial sugar content was calculated for ‘Delikates’ kohlrabi flesh and 65% for ‘Korist’. L-ascorbic acid was well preserved in the kohlrabi, since 90% remained after storage was completed. The isothiocyanate content changed little and the vegetable remained a good source of these compounds throughout the storage period.


2012 ◽  
Vol 77 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Aneta Grabowska ◽  
Edward Kunicki ◽  
Agnieszka Sękara ◽  
Andrzej Kalisz ◽  
Renata Wojciechowska

Summary Modifications in growing techniques can affect the yield and nutritional quality of various cultivated plants. Among them, the use of biostimulants is environmental friendly method of stimulating crop productivity, stress resistance, and affecting yield or chemical composition of the plants. The aim of the investigation was determining of the effect of biostimulant treatment on yield and its quality of carrot grown for summer harvest. The experiment was carried out in 2009-2011 in the experimental station of the University of Agriculture in Krakow, south Poland. Two experimental factors were taken into consideration: (1) cultivar: Nandrin F1 and Napoli F1 (2) dose of Aminoplant (foliar application): 1.5 and 3.0 dm3∙ha-1 and control (without Aminoplant). Total and marketable yield, root length, its diameter, leaf mass and leaf : root mass ratio were assessed. The dry matter, soluble sugar, carotenoids and nitrate ions contents were analyzed as main determinants of carrot nutritional quality. Aminoplant influenced not only carrot productivity, but mainly chemical composition of the roots. The present results also suggest that carrot reaction to biostimulant treatment was depended on a cultivar more than on environmental conditions in particular growing seasons. The significant effect of Aminoplant in a dose of 1.5 dm3∙ha-1 on the yield of roots and leaf rosette mass of ‘Nandrin F1’ appeared only in the first year of the experiment. Spraying with Aminoplant in a dose of 3.0 dm3∙ha-1 significantly increased the soluble sugars content in carrot roots of both cultivars but only in 2011. Dry matter content was also affected by biostimulant treatment mainly for ‘Napoli F1’, which showed the lowest dry matter content when sprayed with Aminoplant in a dose of 1.5 dm3∙ha-1. In 2010 control plants contained the greater amount of carotenoids, while in next year roots of plants treated with Aminoplant in a dose of 3.0 dm3∙ha-1 had more these compounds. The significant effect of Aminoplant on nitrates content in carrot roots was observed but were not repeatable in the experimental years, so different climatic conditions modified carrot reaction on biostimulant spraying.


1997 ◽  
Vol 12 (3) ◽  
pp. 140-142 ◽  
Author(s):  
William M. Murphy ◽  
Joshua P. Silman ◽  
Lisa E. McCrory ◽  
Sarah E. Flack ◽  
Abdon L. Schmitt ◽  
...  

AbstractManagement recommendations are needed f or low-input (no N fertilizer) Kentucky bluegrass-dominant/white clover swards, particularly to increase or maintain white clover content. We applied treatments involving different amounts of forage present pre- and postgrazing, with and without harrowing and soil aeration, to a well-established, naturally seeded pasture grazed by dairy cows. Pregrazing dry matter was 2350 or 2700 kg/ha (about 10 or 15 cm tall). Postgrazing dry matter was 1100 or 1575 kg/ha (about 2.5 or 5 cm tall). The sward was composed mainly of Kentucky bluegrass, orchardgrass, quackgrass, timothy, white clover, dandelion, and chicory. Soil aeration and harrowing did not affect botanical composition, plant components, or forage yield. Pre- and postgrazing mass (total forage dry matter per unit area) did not affect botanical composition or plant components, but did influence total forage yield. White clover tended to increase under all pasture-mass treatments. During the second year the lowest postgraz- ing mass produced the most forage (mean: 6685 kg DM/ha). Forage quality of all treatments was excellent (seasonal means: 26% crude protein; 1.6 Meal net energy lactation/kg DM).


Author(s):  
Jiří Skládanka ◽  
Petr Doležal

The aim of this study was to evaluate the effect of a chemical preservative supplementation on the quality of lupine silage as compared with untreated controls. Fresh green Lupine (Lupines lupine), variete Juno, dry matter content 187.15 g / kg at full waxy stage of maturity were chopped to the legth of cut ca 30–50 mm. The crop was artificially wilted for a periody 24 h and ensiled as described above. Lupine were ensiled for 98 days in laboratory silos, capacity about 4 l alone or with supplementation of chemical preservative 3 and 6 l/tone forage respectively). The relatively mean WSC content and the low buffering capacity of lupine crop provided for a good preservation with the chemical preservative. The best quality of fermentation process and nutritive value was found in silages with the supplement of acid mixtures dosed at 6 l / t since they showed not only a better content of net energy (NEL) and CP but also a significantly higher ethanol content, a more favourable RDP content and a hig­her starch content than the control. The supplement of preservatives resulted in the increased DM content in stored silage, in the increased escape of silage effluents and in the inhibited (P < 0.01) formation of acetic acids (19.8±2.17 g / kg DM) in comparison with control silage. In chemical trea­ted silages (3 l/t) was also increased level (P < 0.01) of lactic acid (116.9±2.61 g / kg DM) and total acids in kg of dry matter (143.4±3.64 g / kg), but decreased level of pH value (4.03±0.01), acidity water extract (KVV–1221.1±11.51 mg KOH/100 g silage), titration acidity (FT–0.107±0.002), and of NH3 content (664.1±7.51 mg / kg DM).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dalila Lopes da Silva ◽  
Renato de Mello Prado ◽  
Luis Felipe Lata Tenesaca ◽  
José Lucas Farias da Silva ◽  
Ben-Hur Mattiuz

AbstractCalcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.


2021 ◽  
Author(s):  
Igor L. Bretas ◽  
Domingos S.M. Valente ◽  
Fabyano F. Silva ◽  
Mario L. Chizzotti ◽  
Mário F. Paulino ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 307
Author(s):  
Dawid Wojcieszak ◽  
Maciej Zaborowicz ◽  
Jacek Przybył ◽  
Piotr Boniecki ◽  
Aleksander Jędruś

Neural image analysis is commonly used to solve scientific problems of biosystems and mechanical engineering. The method has been applied, for example, to assess the quality of foodstuffs such as fruit and vegetables, cereal grains, and meat. The method can also be used to analyse composting processes. The scientific problem lets us formulate the research hypothesis: it is possible to identify representative traits of the image of composted material that are necessary to create a neural model supporting the process of assessment of the content of dry matter and dry organic matter in composted material. The effect of the research is the identification of selected features of the composted material and the methods of neural image analysis resulted in a new original method enabling effective assessment of the content of dry matter and dry organic matter. The content of dry matter and dry organic matter can be analysed by means of parameters specifying the colour of compost. The best developed neural models for the assessment of the content of dry matter and dry organic matter in compost are: in visible light RBF 19:19-2-1:1 (test error 0.0922) and MLP 14:14-14-11-1:1 (test error 0.1722), in mixed light RBF 30:30-8-1:1 (test error 0.0764) and MLP 7:7-9-7-1:1 (test error 0.1795). The neural models generated for the compost images taken in mixed light had better qualitative characteristics.


Sign in / Sign up

Export Citation Format

Share Document