scholarly journals Genetic Diversity among Lathyrus ssp. Based on Agronomic Traits and Molecular Markers

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1182 ◽  
Author(s):  
Meriem Miyassa Aci ◽  
Antonio Lupini ◽  
Giuseppe Badagliacca ◽  
Antonio Mauceri ◽  
Emilio Lo Presti ◽  
...  

Grasspea (Lathyrus sativus L.) and its relatives are considered resilient legumes due to their high ability to cope with different stresses. In this study, the genetic diversity of three Lathyrus species (L. sativus, L cicera and L. ochrus) was assessed by agronomic traits and molecular markers (Simple Sequence Repeat-SSR) in order to detect accessions useful for future breeding strategies. Phenotypic traits showed a high significant variation in which 1000 seed weight (1000 SW) and protein content appeared the most discriminant, as observed by principal component analysis (PCA). SSR analysis was able to detect forty-eight different alleles with an average of 9.6 allele per locus, and a Polymorphic Information Content (PIC) and a gene diversity of 0.745 and 0.784, respectively. Cluster analysis based on agronomic traits as well as molecular data grouped accessions by species but not by geographical origin. This result was confirmed by Principal Coordinates Analysis (PCoA) and Structure Analysis as well. Moreover, genetic structure analysis revealed a high genetic differentiation between L. ochrus and the other species. Analysis of MOlecular Variance (AMOVA) displayed a greater genetic diversity within species (77%) than among them (23%). Finally, a significant positive correlation was observed between agronomic and genetic distances (Mantel’s test). In conclusion, the variability detected within accessions in each species and the differences among species may be useful to plan next breeding programs, focusing on biomass production as well as protein content.

2018 ◽  
Vol 16 (5) ◽  
pp. 469-477 ◽  
Author(s):  
Georgios F. Tsanakas ◽  
Photini V. Mylona ◽  
Katerina Koura ◽  
Anthoula Gleridou ◽  
Alexios N. Polidoros

AbstractThe Greek lentil landrace ‘Eglouvis’ is cultivated continuously at the Lefkada island for more than 400 years. It has great taste, high nutritional value and high market price. In the present study, we used morphological and molecular markers to estimate genetic diversity within the landrace. Morphological analysis was based on characteristics of the seed. Molecular analysis was performed using simple sequence repeat (SSR) molecular markers in a high-resolution melting (HRM) approach. ‘Samos’ and ‘Demetra’, two of the most widely cultivated commercial lentil varieties in Greece, were used for comparisons. Morphological analysis was performed with 584 seeds randomly selected from a lot. Analysis of seed dimensions and colour distributed the samples in different categories and highlighted the phenotypic variability in ‘Eglouvis’ lentil seeds. Genetic variability was estimated from 91 individual DNA samples with 11 SSR markers using HRM analysis. Genotyping was based upon the shape of the melting curves and the difference plots; all polymerase chain reaction products were also run on agarose gels. Genetic distances of individuals and principal coordinates analysis suggested that ‘Eglouvis’ landrace has a unique genetic background that significantly differs from ‘Samos’ and ‘Demetra’ and no overlapping could be detected. Genetic variability within the ‘Eglouvis’ landrace can be considered in targeted breeding programs as a significant phytogenetic resource of lentils in Greece.


2008 ◽  
Vol 6 (02) ◽  
pp. 113-125 ◽  
Author(s):  
Shu-Chin Hysing ◽  
Torbjörn Säll ◽  
Hilde Nybom ◽  
Erland Liljeroth ◽  
Arnulf Merker ◽  
...  

The sequence-specific amplified polymorphism (S-SAP) method was used to genotype 198 Nordic bread wheat landraces and cultivars from the 19th to the 21st centuries. It was shown that theSukkula-9900-LARD retrotransposon primer was highly suitable for resolving closely related wheat materials. Cluster analysis was generally consistent with pedigree information and revealed a clear separation for growth habit but not for countries. A principal coordinates analysis (PCoA) showed a separation into different time periods (before 1910, 1910–1969 and 1970–2003). These results are consistent with the breeding history and pedigree information, indicating that little hybridization has occurred between winter and spring wheat, in contrast to frequent exchange of germplasm between the Nordic countries. Estimates of gene diversity, the PCoA results, and changes in band frequencies across time indicate that plant breeding has led to substantial genetic shifts in Nordic wheat. Diversity was reduced through selections from landraces during the early 20th century, followed by a period of relatively lower genetic diversity, and a subsequent increase and net gains in diversity from the late 1960s onwards through the use of exotic germplasm. Thus, an anticipated loss of overall genetic diversity was found to be negligible, although allele losses have occurred at specific loci.


2016 ◽  
Vol 15 (6) ◽  
pp. 539-547 ◽  
Author(s):  
P. Sharma ◽  
S. Sareen ◽  
M. Saini ◽  
Shefali

AbstractHeat stress greatly limits the productivity of wheat in many regions. Knowledge on the degree of genetic diversity of wheat varieties along with their selective traits will facilitate the development of high yielding, stress-tolerant wheat cultivar. The objective of this study were to determine genetic variation in morpho-physiological traits associated with heat tolerance in 30 diverse wheat genotypes and to examine genetic diversity and relationship among the genotypes varying heat tolerance using molecular markers. Phenotypic data of 15 traits were evaluated for heat tolerance under non-stress and stress conditions for two consecutive years. A positive and significant correlation among cell membrane stability, canopy temperature depression, biomass, susceptibility index and grain yield was shown. Genetic diversity assessed by 41 polymorphic simple sequence repeat (SSR) markers was compared with diversity evaluated for 15 phenotypic traits averaged over stress and non-stress field conditions. The mean polymorphic information content for SSR value was 0.38 with range of 0.12–0.75. Based on morpho-physiological traits and genotypic data, three groups were obtained based on their tolerance (HHT, MHT and LHT) levels. Analysis of molecular variance explained 91.7% of the total variation could be due to variance within the heat tolerance genotypes. Genetic diversity among HHT was higher than LHT genotypes and HHT genotypes were distributed among all cluster implied that genetic basis of heat tolerance in these genotypes was different thereby enabling the wheat breeders to combine these diverse sources of genetic variation to improve heat tolerance in wheat breeding programme.


Author(s):  
Indu Rialch ◽  
Rama Kalia ◽  
H. K. Chaudhary ◽  
B. Kumar ◽  
J. C. Bhandari ◽  
...  

Ten morpho-agronomic traits and 80 random amplified polymorphic DNA (RAPD) molecular markers were used to survey genetic diversity in 25 chickpea genotypes. Analysis of variance revealed significant variability among different genotypes for morpho-metric traits. The cluster analysis done using morpho-metric traits grouped 25 genotypes into seven and six clusters in Environment I (Env. I) and Environment II (Env. II), respectively. Three genotypes viz., ICCV-96904, HPG-17, ICCV-95503 and L-HR-1 belonging to diverse clusters were identified divergent and may use in heterosis breeding programme. Of 80 random RAPD markers, 25 were found polymorphic. Three major clusters were identified using 25 polymorphic RAPD markers. The genetic similarity coefficient among genotypes ranged from 0.57 to 0.91. The average polymorphic information content (PIC) for 25 RAPD markers ranges from 0.12 to 0.40. D2-statistic, RAPD analysis and study of genotypes performance revealed sufficient genetic diversity among chickpea genotypes which would be useful in future breeding programme.


2015 ◽  
Vol 15 (3) ◽  
pp. 208-220 ◽  
Author(s):  
K. T. Ramya ◽  
Neelu Jain ◽  
Nikita Gandhi ◽  
Ajay Arora ◽  
P. K. Singh ◽  
...  

Genetic diversity and relationship of 92 bread wheat (Triticum aestivum L.) genotypes from India and exotic collections were examined using simple sequence repeat (SSR) markers and phenotypic traits to identify new sources of diversity that could accelerate the development of improved wheat varieties better suited to meet the challenges posed by heat stress in India. Genetic diversity assessed by using 82 SSR markers was compared with diversity evaluated using five physiological and six agronomic traits under the heat stress condition. A total of 248 alleles were detected, with a range of two to eight alleles per locus. The average polymorphic information content value was 0.37, with a range of 0.04 (cfd9) to 0.68 (wmc339). The heat susceptibility index was determined for grain yield per spike, and the genotypes were grouped into four categories. Two dendrograms that were constructed based on phenotypic and molecular analysis using UPGMA (unweighted pair group method with arithmetic mean) were found to be topologically different. Genotypes characterized as highly heat tolerant were distributed among all the SSR-based cluster groups. This implies that the genetic basis of heat stress tolerance in these genotypes is different, thereby enabling wheat breeders to combine these diverse sources of genetic variability to improve heat tolerance in their breeding programmes.


Author(s):  
Jedidah Wangari Mwangi ◽  
Oduor Richard Okoth ◽  
Muchemi Peterson Kariuki ◽  
Ngugi Mathew Piero

Abstract Background Mung bean is a pulse crop principally grown in the tropic and subtropic parts of the world for its nutrient-rich seeds. Seven mung beans accessions from Eastern Kenya were evaluated using thirteen phenotypic traits. In addition, 10 SSR markers were used to determine their genetic diversity and population structure. This aimed at enhancing germplasm utilization for subsequent mung bean breeding programs. Results Analysis of variance for most of the phenology traits showed significant variation, with the yield traits recording the highest. The first three principal components (PC) explained 83.4% of the overall phenotypic variation, with the highest (PC1) being due to variation of majority of the traits studied such as pod length, plant height, and seeds per pod. The dendogram revealed that the improved genotypes had common ancestry with the local landraces. The seven mung beans were also genotyped using 10 microsatellite markers, eight of which showed clear and consistent amplification profiles with scorable polymorphisms in all the studied genotypes. Genetic diversity, allele number, and polymorphic information content (PIC) were determined using powermarker (version 3.25) and phylogenetic tree constructed using DARWIN version 6.0.12. Analysis of molecular variance (AMOVA) was calculated using GenALEx version 6.5. A total of 23 alleles were detected from the seven genotypes on all the chromosomes studied with an average of 2.875 across the loci. The PIC values ranged from 0.1224 (CEDG056) to 0.5918 (CEDG092) with a mean of 0.3724. Among the markers, CEDG092 was highly informative while the rest were reasonably informative except CEDG056, which was less informative. Gene diversity ranged from 0.1836 (CEDG050) to 0.5102 (CDED088) with an average of 0.3534. The Jaccards dissimilarity matrix indicated that genotypes VC614850 and N26 had the highest level of dissimilarity while VC637245 and N26 had lowest dissimilarity index. The phylogenetic tree grouped the genotypes into three clusters as revealed by population structure analysis (K = 3), with cluster III having one unique genotype (VC6137B) only. AMOVA indicated that the highest variation (99%) was between individual genotype. In addition, marker traits association analysis revealed 18 significant associations (P < 0.05). Conclusion These findings indicate sufficient variation among the studied genotypes that can be considered for germplasm breeding programs.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Nor Asiah Ismail ◽  
M. Y. Rafii ◽  
T. M. M. Mahmud ◽  
M. M. Hanafi ◽  
Gous Miah

Fifty-seven accessions of torch ginger (Etlingera elatior) collected from seven states in Peninsular Malaysia were evaluated for their molecular characteristics using ISSR and SSR markers to assess the pattern of genetic diversity and association among the characteristics. Diversity study through molecular characterization showed that high variability existed among the 57 torch ginger accessions. ISSR and SSR molecular markers revealed the presence of high genetic variability among the torch ginger accessions. The combination of different molecular markers offered reliable and convincing information about the genetic diversity of torch ginger germplasm. This study found that SSR marker was more informative compared to ISSR marker in determination of gene diversity, polymorphic information content (PIC), and heterozygosity in this population. SSR also revealed high ability in evaluating diversity levels, genetic structure, and relationships of torch ginger due to their codominance and rich allelic diversity. High level of genetic diversity discovered by SSR markers showed the effectiveness of this marker to detect the polymorphism in this germplasm collection.


2021 ◽  
Vol 42 (6) ◽  
pp. 1488-1494
Author(s):  
A. Prasanth ◽  
◽  
W. Mohanavel ◽  
D. Jaganathan ◽  
M. Boopathi ◽  
...  

Aim: The present study aimed at measuring the genetic diversity of a set of 219 sorghum accessions differing in their grain colour. Methodology: About 219 diverse sorghum lines differing in their grain colour were obtained from National Bureau of Plant Genetics Resources (NBPGR), New Delhi and genotyped using 17 SSR markers. Polymorphism information content (PIC) and allele frequency were determined using PowerMarker V3.25. Clustering and factorial analysis were performed using DARwin 6.0. GenAlex version 6.5 was used to perform Principal Coordinates Analysis (PCoA) and AMOVA. Diversity analysis was performed by using Darwin. Results: Genotyping of 219 sorghum accessions using 17 SSR markers produced a total of 399 alleles with an average PIC value of 0.85 and gene diversity of 0.87. Highest allele frequency was observed for the marker, Xtxp 265 whereas highest major allele frequency was observed in 196 accessions for the marker, Xtxp 278. Diversity analysis divided the 219 accessions into three clusters (1, 2 and 3) and genotypes belonging to same geographical origin were found to be clustered together. Interpretation: SSR marker based genetic diversity analysis grouped 219 sorghum accessions into three clusters. Grouping and clustering of accessions was mostly based on the geographical origins with some exceptions which may be due to cross hybridisation of accessions between countries paving a way for cross gene flow.


2015 ◽  
Vol 43 (2) ◽  
pp. 140
Author(s):  
Urip Sayekti ◽  
Utut Widyastuti ◽  
Nurita Toruan-Mathius

<p>ABSTRACT</p><p>Effort to increase productivity and other elite characters in Indonesia oil palm breeding program is facing a problem because of the narrow genetic diversity. To broaden the genetic diversity, germplasm exploration has been done in Angola, Central Africa. The objective of this research was to assess the genetic diversity and population structure of Angola originated oil palm germplasm based on 20 SSR markers. The plant materials used were 27 accessions consisted of 136 palms planted in Riau, Sumatera. The DNA was isolated and amplified using PCR. Phylogeny analysis was constructed using Unrooted Neighbor-Joining by DARwin software 6.0.8. The result showed that polymorphic information content (PIC) value is 0.55 (0.17 to 0.75 for each locus) with 102 total number of alleles. Genetic diversity between individuals was higher compared to the genetic diversity within accessions or regions and between accessions or regions. Phylogenetic analysis of 27 accessions showed that accessions were divided into three main groups. Every group containing individuals originated from 5 spatial distribution regions. Principal coordinates analysis (PCoA) showed that accessions were distributed in one structure. Using more primers and samples to get more representative data is recommended for the following research.</p><p>Keywords: allele, locus, germplasm, molecular marker, polymorphic</p>


2008 ◽  
Vol 54 (8) ◽  
pp. 610-618
Author(s):  
G. Vázquez-Marrufo ◽  
D. Marín-Hernández ◽  
M. G. Zavala-Páramo ◽  
G. Vázquez-Narvaez ◽  
C. Álvarez-Aguilar ◽  
...  

Forty-six isolates of the Mycobacterium tuberculosis complex were typified by PCR of the IS6110 region and by Mycobacterium bovis specific primers JB21/JB22. Isolate MVG01 was typified as M. bovis, being the first record of a case of human tuberculosis caused by this species in Mexico. RAPD–PCR was used to describe the genetic diversity of the remaining 45 M. tuberculosis complex isolates. The corrected genotypic diversity value calculated for the analyzed population was 0.96, the estimated mean gene diversity was 0.235, and the corrected Shannon–Weiner index was 2.15. All allele–loci combinations generated showed significant linkage disequilibria. The distribution of genetic variation was analyzed both by the unweighted pair group method with arithmetic averages clustering and by principal coordinates analysis. Unweighted pair group method with arithmetic averages clustering resulted in a tree with four main clusters and one unclustered strain (MVG20), the principal coordinates analysis strain distribution pattern being consistent with this grouping. The obtained results suggest that the studied isolates belong to a clonal population having significant genetic diversity. Our genetic diversity results are comparable with those reported for other populations of M. tuberculosis, although only three RAPD primers were used.


Sign in / Sign up

Export Citation Format

Share Document