scholarly journals Zeolite and Vermiculite as Inorganic Soil Amendments Modify Shoot-Root Allocation, Mineral Nutrition, Photosystem II Activity and Gas Exchange Parameters of Chestnut (Castanea sativa Mill) Plants

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Theocharis Chatzistathis ◽  
Evgenia Papaioannou ◽  
Anastasia Giannakoula ◽  
Ioannis E. Papadakis

One of the most challenging topics for the sustainable agriculture is how to decrease high fertilization rates. A pot experiment, exploring the effects of zeolite (ZEO) and/or vermiculite (VER) as soil amendments, comparing to the soil application of a controlled release fertilizer (CRF), was realized in chestnut plants. Various parameters related to soil fertility, and plant growth, nutrition, and physiology were investigated to gain knowledge towards more sustainable management. After ZEO application and in comparison to CRF, an impressive boost in soil K was achieved. Moreover, soil P and Zn levels were higher in the VER-treated soil, compared to CRF. Leaf K and Ca concentrations were significantly higher in ZEO, compared to the VER treatment; the highest foliar N and Zn concentrations were measured in CRF and VER, respectively. However, significantly lower foliar Mn and Cu were found in VER. The highest root biomass produced in the ZEO treated plants. For most nutrients, their total uptake per plant was higher in CRF and ZEO. Finally, photosynthetic rates were higher in VER (mainly due to non-stomatal factors) and CRF (mainly due to stomatal factors). Our data open a discussion towards the application of ZEO and/or VER as soil amendments in chestnut nurseries and orchards, aiming at partially decreasing fertilization rates and boosting sustainable nutrient management.


2007 ◽  
Vol 55 (2) ◽  
pp. 193-203 ◽  
Author(s):  
P. Almeida ◽  
L. Dinis ◽  
J. Coutinho ◽  
T. Pinto ◽  
R. Anjos ◽  
...  

Studies on gas exchange parameters were made at different temperatures and radiation levels in seven seedling populations of chestnut cultivar Judia from different parts of the Trás-os-Montes region, Portugal. Differences were found for the optimal temperature, which was 31°C for JD7, 31.5°C for JD5, 32°C for JD2, 32.5°C for JD4, 33°C for JD3 and JD6, and 33.5°C for JD1 and the ink-resistant hybrid BRO310. At these values, rates of photosynthesis ranged between 8.7 and 13.4 mmol CO 2 m −2 s −1 for JD6 and JD7, while the light conditions allowing 90% of maximal photosynthesis varied between 650 (JD6) and 1385 (JD4) μmol m −2 s −1 . JD1 showed the highest value of leaf water potential, −0.35 Mpa, and JD6, JD7 and BRO310 the lowest, −0.65 Mpa. JD1 also showed the second lowest stomatal conductance (93 mmol m −2 s −1 ) and transpiration rate (3.0 mmol H 2 O m −2 s −1 ).In relation to the photosynthetic pigments, JD3 and JD7 were the most sun-loving clones having the highest values for the Chl a / b ratio (3.2 and 3.3, respectively), while JD1 had the lowest Chl/Car ratio (3.9). The overall results suggested that the JD3, JD1 and JD5 populations might increase heat stress tolerance in Judia.





2019 ◽  
Author(s):  
S Piazza ◽  
E Sangiovanni ◽  
U Vrhovsek ◽  
M Fumagalli ◽  
S Khalilpour ◽  
...  


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501d-501
Author(s):  
Jonathan N. Egilla ◽  
Fred T. Davies

Six endomycorrhiza isolates from the Sonoran Desert of Mexico [Desert-14(18)1, 15(9)1, 15(15)1, Palo Fierro, Sonoran, and G. geosporum] were evaluated with a pure isolate of Glomus intraradices for their effect on the growth and gas exchange of Hibiscus rosa-sinensis L. cv. Leprechaun under low phosphorus fertility (11 mg P/L). Rooted cuttings of Hibiscus plants were inoculated with the seven mycorrhiza isolates and grown for 122 days. Gas exchange measurements were made on days 26, 88, and 122 after inoculation, and plants were harvested on day 123 for growth analysis. Plants inoculated with the seven isolates had 70% to 80% root colonization at harvest. Plants inoculated with G. intraradices had significantly higher leaf, shoot and root dry matter (DM), leaf DM/area (P ≤ 0.05) than those inoculated with any of the six isolates, and greater leaf area (LA) than Desert-15(9)1 and 15(15)1. Uninoculated plants had significantly lower leaf, shoot, root DM, leaf DM/area and LA (P ≤ 0.05) than the inoculated plants. There were no differences among the seven isolates in any of the gas exchange parameters measured [photosynthesis (A) stomatal conductance (gs), the ratio of intercellular to external CO2 (ci/ca), A to transpiration (E) ratio (A/E)]. The relationship between inoculated and uninoculated plants in these gas exchange parameters were variable on day 122 after inoculation.



Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Maurizio D’Auria ◽  
Marisabel Mecca ◽  
Maria Roberta Bruno ◽  
Luigi Todaro

Improvements in the yield and solubility of chestnut wood extractives, by using different extraction methods and molybdenum catalysts as support, have rarely been reported in literature. Many studies focus on the different parts of trees, except for the chemical characteristics of the remaining extractives achieved from thermally modified (THM) chestnut (Castanea sativa Mill) wood. This research seeks to better understand the effects of extraction techniques and catalysts on the yield and solubility of extractives. GC-MS analysis of the chloroform soluble and insoluble fractions was also used. Accelerated Solvent Extraction (ASE) 110 °C, Soxhlet, and autoclave extraction techniques were used to obtain extractives from untreated and thermally modified (THM) chestnut wood (170 °C for 3 h). Ethanol/H2O, ethanol/toluene, and water were the solvents used for each technique. A polyoxometalate compound (H3PMo12O40) and MoO3 supported on silica were used as catalysts. The THM induced a change in the wood’s surface color (ΔE = 21.5) and an increase in mass loss (5.9%), while the equilibrium moisture content (EMC) was reduced by 17.4% compared to the control wood. The yields of the extractives and their solubility were always higher in THM and mainly used ASE as the technique. GC-MS analysis of the extractives, without catalyst support, showed different results for each extraction technique and type of wood (untreated and THM). Ultimately, the amount of extractive compound dissolved in each solvent will differ, and the choice of extraction technique will depend on the intended final application of the extracted chemical product.



Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 231
Author(s):  
Mariam Gaidamashvili ◽  
Eka Khurtsidze ◽  
Tamari Kutchava ◽  
Maurizio Lambardi ◽  
Carla Benelli

An optimized cryopreservation protocol for embryonic axes (EAs) of chestnut (Castanea sativa Mill.) has been developed based on the encapsulation–vitrification procedure. EAs of mature seeds were aseptically dissected and encapsulated in alginate beads with or without 0.3% (w/v) activated charcoal (AC). Embedded EAs were dehydrated with Plant Vitrification Solution 2 for different treatment times up to 120 min, followed by direct immersion in liquid nitrogen. Cryopreserved embryonic axes encapsulated with AC showed higher survival (70%) compared to those encapsulated without AC (50%). Sixty-four percent of embryonic axes, from synthetic seeds with AC, subsequently developed as whole plants. Plantlet regrowth was faster in AC-encapsulated EAs and showed enhanced postcryopreservation shoot and root regrowth over 2 cm after five weeks from rewarming. Results indicate that encapsulation–vitrification with activated charcoal added to the beads is an effective method for the long-term preservation of Castaneasativa embryonic axes.



Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Vegas Riffle ◽  
Nathaniel Palmer ◽  
L. Federico Casassa ◽  
Jean Catherine Dodson Peterson

Unlike most crop industries, there is a strongly held belief within the wine industry that increased vine age correlates with quality. Considering this perception could be explained by vine physiological differences, the purpose of this study was to evaluate the effect of vine age on phenology and gas exchange parameters. An interplanted, dry farmed, Zinfandel vineyard block under consistent management practices in the Central Coast of California was evaluated over two consecutive growing seasons. Treatments included Young vines (5 to 12 years old), Control (representative proportion of young to old vines in the block), and Old vines (40 to 60 years old). Phenology, leaf water potential, and gas exchange parameters were tracked. Results indicated a difference in phenological progression after berry set between Young and Old vines. Young vines progressed more slowly during berry formation and more rapidly during berry ripening, resulting in Young vines being harvested before Old vines due to variation in the timing of sugar accumulation. No differences in leaf water potential were found. Young vines had higher mid-day stomatal conductance and tended to have higher mid-day photosynthetic rates. The results of this study suggest vine age is a factor in phenological timing and growing season length.



Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1538
Author(s):  
Ana Teresa Alhinho ◽  
Miguel Jesus Nunes Ramos ◽  
Sofia Alves ◽  
Margarida Rocheta ◽  
Leonor Morais-Cecílio ◽  
...  

The sweet chestnut tree (Castanea sativa Mill.) is one of the most significant Mediterranean tree species, being an important natural resource for the wood and fruit industries. It is a monoecious species, presenting unisexual male catkins and bisexual catkins, with the latter having distinct male and female flowers. Despite the importance of the sweet chestnut tree, little is known regarding the molecular mechanisms involved in the determination of sexual organ identity. Thus, the study of how the different flowers of C. sativa develop is fundamental to understand the reproductive success of this species and the impact of flower phenology on its productivity. In this study, a C. sativa de novo transcriptome was assembled and the homologous genes to those of the ABCDE model for floral organ identity were identified. Expression analysis showed that the C. sativa B- and C-class genes are differentially expressed in the male flowers and female flowers. Yeast two-hybrid analysis also suggested that changes in the canonical ABCDE protein–protein interactions may underlie the mechanisms necessary to the development of separate male and female flowers, as reported for the monoecious Fagaceae Quercus suber. The results here depicted constitute a step towards the understanding of the molecular mechanisms involved in unisexual flower development in C. sativa, also suggesting that the ABCDE model for flower organ identity may be molecularly conserved in the predominantly monoecious Fagaceae family.



2013 ◽  
Vol 58 (2) ◽  
pp. 741-746 ◽  
Author(s):  
Katarína Adamčíková ◽  
Gabriela Juhásová ◽  
Marek Kobza ◽  
Emília Ondrušková

Abstract Localities in Castanea sativa Mill. plantations were visited in a study aimed at identifying the mycoflora of C. sativa in Slovakia [excluding Cryphonectria parasitica (Murr.), Barr for which much data is available]. Samples from chestnut tree branches and stems were examined visually and microscopically. Seven species of microfungi were recorded, three with their anamorphs. Coryneum modonium (Sacc.) Griffon & Maubl. and Phomopsis castaneae Woron. were the most common. Libertella quercina Tul. & C. Tul. was identified in both states (anamorph and teleomorph) at two new localities. The records of Gloniopsis praelonga (Schwein.) Underw. & Earle and Dothidotthia celtidis (Ellis & Everh.) M. E. Barr are the first for Slovakia. These species were rare, found only in one locality. Two microscopic fungi were detected: Valsa ambiens (Pers.) Fr. [Cytospora ambiens (Nitschke) Sacc.] and Diplodina castaneae Prill. & Delacr.



Sign in / Sign up

Export Citation Format

Share Document