scholarly journals Proximal Sensing of Nitrogen Needs by Spring Wheat

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 437
Author(s):  
Sarig Shlomo ◽  
Eli Shlevin ◽  
Arkadi Zilberman ◽  
Idan Richker ◽  
Mordechay Dudai ◽  
...  

Canopy nitrogen (N) status relates strongly to canopy chlorophyll content and the strength of green color. Proximal photograph by RGB camera was used to select green features that has the po­tential to assess N content at leaf of plant as a function of its the greenness. We proposed the development of it as a tool for sensing nitrogen content in spring wheat (Triticum aestivum). Image processing algorithm was programed calibrated and validated wheat %N%N. Nitrogen uptake =%N × canopy dry matter was harvested and calculated using simulated dry matter by DSSAT model. The data replicated laboratory measurements. A linear Lab vs Camera model displayed a unit slope with r2 = 0.93. Increase of dry matter was successfully surrogated by days after emergence and used as abscissa for inverse logistic model of critical nitrogen level. It decreased gradually from about 6% to 2% as days after emergence increased from 0 to 110 days. Maximum N uptake calculated from photo and laboratory was 324 Kg·ha−1 and 318 Kg·ha−1 respectively suggesting insignificant difference. Physiological N-use efficiency (i.e., canopy weight /N weight) was 52 and 78 kg canopy dry weight per 1 kg N for early and late-ripening cultivars, respectively. The determination of N application based on the smartphone photograph proved to be useful by saving on time and expenses for growers who have access to smartphones and can use them for N application and management.

2020 ◽  
Author(s):  
Jiftah Ben-Asher

<p>The first Nc dilution curve was based on dry matter (DM) power function. This model is limited to  point of singularity near zero. Another disadvantage was that it required meaasurements of DM which is time and labor consuming. Alternatively we proposed a logistic model that starts at zero and on the abscissa assumed a linear relationship between days after emergence (DAE) and DM throughout the relevant stages of wheat growth cycle.  </p><p>The Objectives of this study were to: 1) To demonstrate the feasibility of digital camera to replace laboratory tests. 2) To Determine critical N (Nc) and Nitrogen nutrition Index(NNI) of spring wheat and 3) Use N% and dry matter yield in order to calculate N uptake by wheat. This last is expected to be a tool to calculate the required amount of nitrogen to obtain maximum yield.</p><p>Wheat experiments were conducted in greenhouse lysimeters. Varied rates of N fertilizer (equivalent to 0–180 kg ha<sup>-1</sup>) and several  cultivars varying from shortest to longest ripening growth period. Nc reduced gradually from about 6% to 2%  ( =60-20 gr/Kg) when DM increased with DAE  from 0 to 14,000 kg/ha during 80 growing days.  NNI was stable and clearly distinct between   maximal index (1.0  and minimal index (0.2) when (DAE) was about 60;   Photographs succeeded to replicate laboratory measurements and obtained a linear regression curve with a unity  slop and r<sup>2</sup>=0.93. Nitrogen.  use efficiency (NUE) ranged from 50 to 65 kg  DM/unit N and from 30 to 50 Kg grain /unit N .</p>


1970 ◽  
Vol 74 (1) ◽  
pp. 111-117 ◽  
Author(s):  
E. D. Spratt ◽  
J. K. R. Gasser

SUMMARYWheat, ryegrass and kale were grown with ammonium sulphate (treated with a nitrification inhibitor) or calcium nitrate supplying 50 and 100 lb N/acre, and without fertilizer-N. Plants were sampled at various stages, dry weights measured, percentage N determined and N uptakes calculated.Initially wheat and ryegrass grew better and took up more N with ammonium fertilizer than with nitrate. Final yields of dry matter did not differ between forms. Kale produced more dry matter with calcium nitrate than with ammonium sulphate. All crops produced more dry matter with fertilizer-N than without. Fertilized crops contained greatest weights of N 109 days after sowing, when wheat and ryegrass had more with ammonium than with nitrate and kale had less. The 50 lb N/acre as calcium nitrate produced the most wheat grain/lb of fertilizer-N.During the period when growth and N uptake were fastest, wheat grew faster with ammonium than with nitrate, ryegrass grew similarly with both forms, and kale faster with nitrate; wheat and ryegrass took up N faster from ammonium sulphate and kale from calcium nitrate.Mature wheat recovered 58% of the fertilizer-N from calcium nitrate and 43% from ammonium sulphate. After 21 weeks of growth, kale recovered more N from calcium nitrate (50%) than from ammonium sulphate (24%), whereas grass recovered about 40% from each.


1996 ◽  
Vol 121 (1) ◽  
pp. 57-62 ◽  
Author(s):  
J.P. Syvertsen ◽  
M.L. Smith

Four-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on either the relatively fast-growing rootstock `Volkamer' lemon (VL) (C. volkameriana Ten. & Pasq.) or on the slower-growing rootstock sour orange (SO) (C. aurantium L.) were transplanted into 7.9-m3 drainage lysimeter tanks filled with native Candler sand, irrigated similarly, and fertilized at three N rates during 2.5 years. After 6 months, effects of N application rate and rootstock on tree growth, evapotranspiration, fruit yield, N uptake, and leaching were measured during the following 2 years. When trees were 5 years old, low, medium, and high N application rates averaged about 79,180, or 543 g N/tree per year and about 126,455, or 868 g N/tree during the following year. Recommended rates average about 558 g N/tree per year. A lysimeter tank with no tree and additional trees growing outside lysimeters received the medium N treatment. Nitrogen concentration in the drainage water increased with N rate and exceeded 10 mg·liter-1 for trees receiving the high rates and also for the no tree tank. Leachate N concentration and total N recovered was greater from trees on SO than from those on VL. Average N uptake efficiency of medium N rate trees on VL was 6870 of the applied N and 61 % for trees on SO. Nitrogen uptake efficiency decreased with increased N application rates. Trees outside lysimeters had lower leaf N and fruit yield than lysimeter trees. Overall, canopy volume and leaf N concentration increased with N rate, but there was no effect of N rate on fibrous root dry weight. Fruit yield of trees on SO was not affected by N rate but higher N resulted in greater yield for trees on VL. Rootstock had no effect on leaf N concentration, but trees on VI. developed larger canopies, had greater fibrous root dry weight, used more water, and yielded more fruit than trees on SO. Based on growth, fruit yield and N leaching losses, currently recommended N rates were appropriate for trees on the more vigorous VL rootstock but were 22% to 69 % too high for trees on SO.


1983 ◽  
Vol 63 (4) ◽  
pp. 719-725 ◽  
Author(s):  
A. A. BOMKE ◽  
R. A. BERTRAND

Urea and ammonium nitrate were applied at rates of 75, 150 and 300 kg N/ha as either a single application in April or split into three equal increments, one applied in April and the second and third following cuts one and two. The orchardgrass-perennial ryegrass sward responded significantly to applied N in each year; however, the yield produced by the two sources differed in only one of the three years. In that year split applied ammonium nitrate gave 8% higher yields than similarly applied urea. The sources were found to be equivalent when applied in the spring. Split application of the N rates increased total annual dry matter yields in one of the three years regardless of N source. In all three years split application of N shifted forage production from cut one to cuts two and three. Key words: N uptake, split N application, orchardgrass-perennial ryegrass sward


1984 ◽  
Vol 102 (2) ◽  
pp. 361-366 ◽  
Author(s):  
R. L. Yadav ◽  
R. Mohan ◽  
R. Singh ◽  
R. K. Verma

SummaryIn a 2-year field study conducted at Lucknow (26·5° N, 80·5° E and 120 m altitude), plant height, leaf area index, dry-matter accumulation and N uptake of opium poppy (Papaver somniferum L.) followed a sigmoid path. After attaining a peak of accumulation at 120 days, dry matter declined in plots given N fertilizer but remained static in the control. N application (50, 100, 150 and 200 kg/ha) increased the opium, seed and morphine yields compared with the control. Morphine concentration (%) in the opium, however, increased up to 100 kg N/ha and decreased when N doses exceeded that level. Divided application of N, i.e. half at sowing and remainder at the stem elongation stage, proved beneficial for opium, seed and morphine yields.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 672a-672
Author(s):  
Wei Qiang Yang ◽  
Barbara L. Goulart ◽  
Kathleen Demchak

Aluminum and P interactions were investigated in mycorrhizal (M) and nonmycorrhizal (NM) highbush blueberry plantlets in a factorial experiment. The toxic effects of Al on highbush blueberry were characterized by decreased shoot, root, and total plant dry weight. Many of the negative effects of Al on plant root, shoot, and total dry-matter production were reversed by foliar P and N application, indicating P or N uptake were limited by high Al concentration. However, Al mediated growth reduction in P-stressed plants suggested that the restriction of P uptake by high Al may not have been the only mechanism for Al toxicity in this experiment. Root Al and P concentration were negatively correlated in NM plantlets but not in M plantlets, suggesting mycorrhizal infection may alter P uptake processes. Al uptake also was affected by M infection, with more Al accumulating in M plantlet roots and leaves. Correlations among foliar ion concentrations were also affected by M fungal infection.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 672f-673
Author(s):  
L.P. Brandenberger ◽  
R.P. Wiedenfeld ◽  
D. Makus

Fertilization programs used commercially for bell peppers (Capsicum annuum) in the subtropical Lower Rio Grande Valley of Texas may vary substantially from recommendations based on research. Therefore, a commercial fertilization program used on a significant fraction of the pepper production in this area was evaluated at two locations. Preplant soil tests showed NO3-N levels were low at one location and very high at the other. Nitrogen application where preplant soil NO3-N was low resulted in a six-fold yield increase (from 197 to 1203 kg·ha–1), and improvements in fruit weight, fruit volume, fruit density, wall thickness, wall strength, and carotenoid and chlorophyll a and b contents. No other nutrient application at either location or N application at the site where preplant soil NO3-N levels were high significantly affected yield by size class, fruit quality characteristics, storage properties, or mineral and organic components. Nitrogen application had the greatest effect on dry-weight accumulation and N uptake during fruit set and maturation when N demand was high. Where N responses were observed, N application increased total dry weight in plant and fruit by 150% and total N uptake by 186%, yet this increase amounted to a N fertilizer uptake efficiency of only 12%. Thus, N should be used judiciously to prevent pollution of drainage and ground waters.


2021 ◽  
Vol 12 (5) ◽  
pp. 570-576
Author(s):  
L. Shravika ◽  
◽  
G. Sreenivas ◽  
A. Madhavi ◽  
A. Manohar Rao ◽  
...  

A field investigation was undertaken during Kharif (June–September) 2019 at Agriculture Research Institute, Professor Jayashankar Telangana State Agriculture University, Rajendranagar, Hyderabad, Telengana State, India with an object to evaluate the CROPGRO-Tomato model under different dates of planting and cultivars.The experiment was carried out with dates of planting (02nd Jul, 12th Jul, 22nd Jul, 02nd Aug, 11th Aug, 23rd Aug, 03rd Sep and 13th Sep) as main plot treatments and cultivars US 440 and TO-3251 (Saaho) as sub-plot treatments. The CROPGRO-Tomato model performed well in the simulation of phenology, biomass, fruit yield and N uptake during calibration for US 440 and TO-3251.Calibration results revealed that the model perfectly predicted days to anthesis with no difference between simulated and observed data for both cultivars with RMSE of 0 days, the further model simulated the days to last picking,biomassat maturity, fruit yield and nitrogen uptake with RMSE of 0.9 and 0.7 day, 285 and 435 kg ha-1, 545 kg ha-1 and 389 kg ha-1 (dry weight), 6 and 5 kg ha-1 for US 440 and TO-3251 cultivars respectively. The calibrated model was used to further validate the experimental data and found that, simulation of days to anthesisand days to the last picking was excellent with NRMSE value of less than 10% for both cultivars,fair with dry matter production with NRMSE value of 25% for both cultivars and was poor with total fruit yield greater than 30% and N uptake for both cultivars under study was poor with NRMSE value more than 30%.


1991 ◽  
Vol 31 (1) ◽  
pp. 85 ◽  
Author(s):  
AD Doyle ◽  
RA Shapland

Experiments were conducted with dryland wheat on a nitrogen (N) deficient site near Gunnedah, northern New South Wales, in 1987 and 1988 to compare post-sowing foliar applications of N with urea drilled between the rows at sowing. Post-sowing N was applied at tillering, booting or at both stages at rates of 20 or 40 kg N/ha while presowing applications ranged from 0-106 kg N/ha. Above ground dry weight and N uptake increased with increasing N application at sowing. Post-sowing N application increased dry weight and N uptake, with generally greater increases in N uptake than in dry weight. Dry weight and N uptake for post-sowing N application were invariably less than when an equivalent amount of N had been applied at sowing. Grain yield was increased by the application of up to 106 kg N/ha at sowing in 1987 and up to 80 kg N/ha in 1988 when a greater degree of moisture stress during grain filling restricted yield responses. Post-sowing N increased grain yield, but the yield response was lower than for the application of an equivalent amount of N at sowing. Grain yield responses were lower when N was applied at booting rather than tillering. Yield responses over the 2 years were 0.35-0.39 t/ha and 0.44-0.68 t/ha for 20 and 40 kg N/ha, respectively, applied at tillering and 0.26-0.4 t/ha and 0.26-0.48 t/ha for N application at booting. Post-sowing N application increased grain protein, with greater increases for booting than for tillering applications. There was an apparent recovery in the grain of 48-56% of N applied at sowing, but only 25-48% of N applied post-sowing.


1960 ◽  
Vol 55 (1) ◽  
pp. 35-46 ◽  
Author(s):  
A. H. Bunting ◽  
B. Anderson

A study, using the methods of growth analysis, is reported of the accumulation of dry matter in two Natal Common groundnut crops grown at Kongwa, Tanganyika under conditions of relatively low population (26,000 plants/acre) with phosphate fertilizer (F series), and at a higher population (56,000 plants/acre) without fertilizer (O series). The uptake and distribution of N, P, K, Mg and Ca was followed in the F series.In the F series, the dry weight per plant at maturity was 32·7 g., of which 14·9 g. (45%) was kernels, while in the O series the corresponding figures were 20·6 and 10·4 g. The relative growth rates, net assimilation rates and leaf-area ratios were similar in the two crops, with small but consistent advantages to the F series. Nevertheless, the yields per acre were markedly higher in the O series, where total dry-matter and kernel yield were 2540 and 1290 lb./acre, respectively, against 1910 and 870 lb. in the F series. It is shown that this was the result of consistently higher leaf weights per acre and a higher total leaf-weight duration (4180 lb. weeks/acre) in the O series than in the F series, where total leaf weight duration was 2810 lb. weeks/acre.The formation of the kernels continued to maturity in each case, largely at the expense of current assimilation rather than by net translocation from the vegetative parts.The uptake of N, in the F series, reached a total of 63 lb./acre, of which 45 lb. was in the mature kernels. It went largely into the vegetative parts during the first two-thirds of the crop's life, but in the final stages most of the uptake went into the kernels and there was some evidence of translocation of N from the vegetative parts and the shells. N accumulation did not seem to be affected by rainfall fluctuations within the season. The net assimilation rate did not appear to be directly associated with the activity of the plant in accumulating N, but the leaf-area ratio, and the relative growth rate, were associated with the rate of N uptake per unit of plant dry weight.The total P taken up was no more than 4 lb. (of the element) per acre of which nearly 80% was found in the kernels at maturity. There was considerable evidence of translocation of P into the kernels from the vegetative parts of the plant. P uptake (unlike that of N) was heavily reduced in a mid-season dry period, suggesting that P was largely derived from the upper layers of the soil.The total amount of K found in the crop at maturity was about 26 lb./acre, mostly in the vegetative parts. Rather under a fifth was in the kernels, although they constituted 45% of the total dry weight. The data for Ca and Mg are incomplete, but it may be suggested that the maximum accumulation of Ca was around 10 lb./acre, almost all in the vegetative parts, and that of Mg about 5 lb./acre, of which 2 were in the kernels.The grateful thanks of the authors are due to Dr M. T. Friend, of the East African Agriculture and Forestry Research Organisation, Muguga, Kenya, who determined N and P in the samples of the F series, and to Mr G. T. Chamberlain, of the same Organisation, who carried out the estimations of K, Ca and Mg. They would also wish to express their indebtedness to the members of the former Scientific Department of the Overseas Food Corporation who assisted with the work in laboratory and field, and in particular to Mr B. W. Culy, Manager of the Kongwa Experimental Station, who was responsible for the production of the crops.


Sign in / Sign up

Export Citation Format

Share Document