scholarly journals A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Ján Horák ◽  
Tatijana Kotuš ◽  
Lucia Toková ◽  
Elena Aydın ◽  
Dušan Igaz ◽  
...  

Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N2O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water availability (an increase from 1% to 15%), saturated hydraulic conductivity (an increase from 5% to 95%). The effects were more significant in the following cases: repeated rather than single biochar application, higher rather than lower biochar application rates, and higher rather than lower N fertilization levels. Initial and repeated biochar applications, leading to N2O emissions reduction, can be related to increased soil pH(KCl).

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


Soil Systems ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Rivka Fidel ◽  
David Laird ◽  
Timothy Parkin

Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale.


Soil Research ◽  
2014 ◽  
Vol 52 (8) ◽  
pp. 841 ◽  
Author(s):  
Muhammad Shaaban ◽  
Qian Peng ◽  
Shan Lin ◽  
Yupeng Wu ◽  
Jinsong Zhao ◽  
...  

The effect of dolomite (CaMg(CO3)2) application on nitrous oxide (N2O) emission was examined in a laboratory study with soil from a rice paddy–rapeseed rotation (PR soil, pH 5.25) and from a rice paddy–fallow–flooded rotation soil (PF soil, pH 5.52). The soils were treated with 0, 0.5 (L) and 1.5 (H) g dolomite 100 g–1 soil. Results showed that N2O emissions were higher in control treatments (untreated dolomite) in both soils. Application of dolomite decreased N2O emissions significantly (P ≤ 0.001) as soil pH increased in both soils. The H treatment was more effective than the L treatment for the reduction of N2O emissions. The H treatment decreased the cumulative N2O emissions by up to 73.77% in PR soil and 64.07% in PF soil compared with the control. The application of dolomite also affected concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate in soils, which related to N2O emission. The results suggest that dolomite not only counteracts soil acidification but also has the potential to mitigate N2O emissions in acidic soils.


2014 ◽  
Vol 70 (8) ◽  
pp. 1307-1313 ◽  
Author(s):  
Bo Hu ◽  
Shan He ◽  
Jianqiang Zhao ◽  
Ying Chen

To obtain a comprehensive understanding of nitrous oxide (N2O) emission from water to air, the impacts of external disturbances including wind, stirring and aeration on N2O emissions were investigated by continuously monitoring N2O concentration variations in water. The volumetric mass transfer coefficient of N2O from water to air (KLaN2O) under different conditions was determined by using exponential regression to fit the monitoring data. The results showed that KLaN2O was 0.0017 min–1 at the stable condition, and with the increase of wind velocity, stirring velocity and aeration rate, the diffusion of N2O from water to air was enhanced. It was also observed that KLaN2O linearly increased with the increase of wind velocity and aeration rate, and exponentially increased with the increase of stirring velocity. The sequencing of the impacts of the three factors on N2O emission was aeration > stirring > wind. As turbulence and the mixing intensity of the liquid phase under the aeration condition were more vigorous than those of the wind and the stirring, the impact of aeration on N2O emission was greater than those of wind and stirring. When predicting N2O emissions from water to air, external disturbances, either environmental factors or operational factors, should be taken into consideration.


Agriculture ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 213 ◽  
Author(s):  
Auldry Chaddy ◽  
Lulie Melling ◽  
Kiwamu Ishikura ◽  
Ryusuke Hatano

(1) Background: Nitrogen (N) fertilization on drained tropical peatland will likely stimulate peat decomposition and mineralization, enhancing N2O emission from the peat soil. (2) Methods: A field experiment was conducted to quantify the N2O emissions from soil in an oil palm plantation (Elaeis guineensis Jacq.) located in a tropical peatland in Sarawak, Malaysia, under different rates of N fertilizers. The study was conducted from January 2010 to December 2013 and resumed from January 2016 to December 2017. Nitrous oxide (N2O) flux was measured every month using a closed chamber method for four different N rates; control—without N (T1), 31.1 kg N ha−1 yr−1 (T2), 62.2 kg N ha−1 yr−1 (T3), and 124.3 kg N ha−1 yr−1 (T4); (3) Results: Application of the N fertilizer significantly increased annual cumulative N2O emissions for T4 only in the years 2010 (p = 0.017), 2011 (p = 0.012), 2012 (p = 0.007), and 2016 (p = 0.048). The highest average annual cumulative N2O emissions were recorded for T4 (41.5 ± 28.7 kg N ha−1 yr−1), followed by T3 (35.1 ± 25.7 kg N ha−1 yr−1), T1 (25.2 ± 17.8 kg N ha−1 yr−1), and T2 (25.1 ± 15.4 kg N ha−1 yr−1), indicating that the N rates of 62.2 kg N ha−1 yr−1 and 124.3 kg N ha−1 yr−1 increased the average annual cumulative N2O emissions by 39% and 65%, respectively, as compared to the control. The N fertilization had no significant effect on annual oil palm yield (p = 0.994). Alternating between low (deeper than −60 cm) and high groundwater level (GWL) (shallower than −60 cm) enhanced nitrification during low GWL, further supplying NO3− for denitrification in the high GWL, and contributing to higher N2O emissions in high GWL. The emissions of N2O ranged from 17 µg N m−2 hr−1 to 2447 µg N m−2 hr−1 and decreased when the water-filled pore space (WFPS) was between 70% and 96%, suggesting the occurrence of complete denitrification. A positive correlation between N2O emissions and NO3− at 70–96% WFPS indicated that denitrification increased with increased NO3− availability. Based on their standardized regression coefficients, the effect of GWL on N2O emissions increased with increased N rate (p < 0.001). Furthermore, it was found that annual oil palm yields negatively correlated with annual N2O emission and NO3− for all treatments. Both nitrification and denitrification increased with increased N availability, making both processes important sources of N2O in oil palm cultivation on tropical peatland.; and (4) Conclusions: To improve understanding of N2O mitigation strategies, further studies should consider plant N uptake on N2O emissions, at least until the completion of the planting.


2019 ◽  
Vol 11 (6) ◽  
pp. 1624
Author(s):  
Wenchao Cao ◽  
Su Liu ◽  
Zhi Qu ◽  
He Song ◽  
Wei Qin ◽  
...  

Solar greenhouse vegetable fields have been found to be hotspots of nitrous oxide (N2O) emissions in China, mainly due to excessive manure application and irrigation. Pulses of N2O emissions have been commonly reported by field monitoring works conducted in greenhouse fields, though their significance regarding total N2O emissions and the driving mechanism behind them remain poorly understood. N2O fluxes were monitored in situ using a static opaque chamber method in a typical greenhouse vegetable field. Then, laboratory incubations were conducted under different soil moisture and manure application gradients to monitor nitrous oxide emissions and related soil properties, using a robotized incubation system. Field monitoring showed that the occurrence of clear N2O emission bursts closely followed fertilization and irrigation events, accounting for 76.7% of the annual N2O efflux. The soil N2O flux increased exponentially with the water-filled pore space (WFPS), causing extremely high N2O emissions when the WFPS was higher than 60%. During the lab incubation, emission bursts led to N2O peaks within 40 h, synchronously changing with the transit soil NO2−. An integrated analysis of the variations in the gas emission and soil properties indicated that the denitrification of transit NO2− accumulation was the major explanation for N2O emission bursts in the greenhouse filed. Nitrous oxide emission bursts constituted the major portion of the N2O emissions in the Chinese greenhouse soils. Nitrite (NO2−) denitrification triggered by fertilization and irrigation was responsible for these N2O emission pulses. Our results clarified the significance and biogeochemical mechanisms of N2O burst emissions; this knowledge could help us to devise and enact sounder N2O mitigation measures, which would be conducive to sustainable development in vegetable greenhouse fields.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 198 ◽  
Author(s):  
Janquieli Schirmann ◽  
Diego Fernandes de Bastos ◽  
Douglas Adams Weiler ◽  
Murilo G. Veloso ◽  
Jeferson Dieckow ◽  
...  

Native grassland supports extensive livestock production in the Pampas of South America, but the impact of cattle excreta on nitrous oxide (N2O) emissions remains unknown in this biome. The objective of this study was to determine the N2O emission factor (EF-N2O, % of N applied that is emitted as N2O) for urine and dung from beef cattle grazing on native grasslands. A field trial was conducted under low and moderate forage allowances (FA4 and FA12; i.e. 4 and 12 kg dry matter/100 kg live weight respectively) during the 30th year of a long-term grassland experiment on a Typic Paleudult in South Brazil. Urine and dung were applied onto separate patches, at rates equivalent to one average urination or defecation; and N2O fluxes were monitored with closed static chambers over 338 days. In adjacent microplots receiving the same excreta treatment, water-filled pore space, nitrate, ammonium and extractable dissolved organic carbon were monitored in the top 0.1 m of soil. Averaged across the forage allowances, daily soil N2O fluxes were low in the control without excreta (1.3 g N ha–1), but increased upon application of dung (3.8 g N ha–1) and urine (66 g N ha–1). The annual N2O emission and the EF-N2O for urine were greater under FA12 than FA4, but no difference was observed for dung. The positive relationships between N2O-N emissions and ammonium intensity and nitrate intensity suggest that N2O may have been produced concurrently by nitrification, nitrifier/denitrification and denitrification. On average, the EF-N2O was almost 10 times higher for urine than for dung (0.74% vs 0.08%), both much lower than the IPCC’s Tier 1 default value of 2%. Our findings reinforce the need for disaggregating the EF-N2O for urine and dung and of revising the IPCC’s Tier 1 EF-N2O.


Sign in / Sign up

Export Citation Format

Share Document