scholarly journals Glucose-6-Phosphate Dehydrogenase Is Involved in the Tolerance of Soybean Seedlings to Low Nitrogen Stress

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 637
Author(s):  
Jie Jin ◽  
Xiaomin Wang ◽  
Jianfeng Wang ◽  
Keke Li ◽  
Shengwang Wang ◽  
...  

Nitrogen (N) deficiency affects plant growth and crop yield. In this study, we investigated the role of glucose-6-phosphate dehydrogenase (G6PDH) in response to N availability in three soybean cultivars, JINDOU 19 (JD19), LONGHUANG 3 (LH3), and LONGDOU 2 (LD2), that have different tolerances to low-N stress. The results showed that the leaf area and primary root length of JD19 and LH3 were greater than that of LD2 under low-N stress, suggesting that the growth of JD19 and LH3 were impaired less than LD2, and thus are more tolerant to low-N stress than LD2 is. Interestingly, the G6PDH expression showed different degrees of change in these soybean cultivars under low-N conditions, and the G6PDH activity in JD19 and LH3 was higher than that in LD2. When G6PDH was inhibited by glucosamine (GlcN), the contents of malondialdehyde (MDA) and H2O2 were dramatically increased under low-N stress. Meanwhile, the activities of N metabolism-related enzymes were inhibited. These results indicate that G6PDH is involved in the tolerance of soybean cultivars to low-N stress through affecting the N metabolism. Furthermore, under low-N conditions, the contents of NADP+ and reduced glutathione (GSH) in JD19 and LH3 were increased more than that in LD2. In contrast, the activity of the plasma membrane (PM), NADPH oxidase, and the NADPH content in JD19 and LH3 were lower than that in LD2. In conclusion, G6PDH reduces the accumulation of ROS in plant cells by modulating NADPH/NADP+ and GSH levels to maintain the growth of soybeans under low-N conditions.

2014 ◽  
Vol 13 (11) ◽  
pp. 2508-2517 ◽  
Author(s):  
Kun GAO ◽  
Fan-jun CHEN ◽  
Li-xing YUAN ◽  
Guo-hua MI

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra de Sousa ◽  
Hamada AbdElgawad ◽  
Fernanda Fidalgo ◽  
Jorge Teixeira ◽  
Manuela Matos ◽  
...  

Abstract Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al-tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes differing in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were different and were also different between roots and shoots. The Al-tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)-biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N-metabolism is less inhibited in the Al-tolerant line. The correlation between Pro changes and differences in Al-sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that differential responses in Pro biosynthesis may be linked to N-availability. Understanding the role of Pro in differences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance.


2021 ◽  
Vol 22 (14) ◽  
pp. 7436
Author(s):  
Helga Simon-Molas ◽  
Xavier Vallvé-Martínez ◽  
Irene Caldera-Quevedo ◽  
Pere Fontova ◽  
Claudia Arnedo-Pac ◽  
...  

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


2021 ◽  
Vol 22 (9) ◽  
pp. 4738
Author(s):  
Hye-Yeon Seok ◽  
Hyungjoon Bae ◽  
Taehyoung Kim ◽  
Syed Muhammad Muntazir Mehdi ◽  
Linh Vu Nguyen ◽  
...  

Despite increasing reports on the function of CCCH zinc finger proteins in plant development and stress response, the functions and molecular aspects of many non-tandem CCCH zinc finger (non-TZF) proteins remain uncharacterized. AtC3H59/ZFWD3 is an Arabidopsis non-TZF protein and belongs to the ZFWD subfamily harboring a CCCH zinc finger motif and a WD40 domain. In this study, we characterized the biological and molecular functions of AtC3H59, which is subcellularly localized in the nucleus. The seeds of AtC3H59-overexpressing transgenic plants (OXs) germinated faster than those of wild type (WT), whereas atc3h59 mutant seeds germinated slower than WT seeds. AtC3H59 OX seedlings were larger and heavier than WT seedlings, whereas atc3h59 mutant seedlings were smaller and lighter than WT seedlings. Moreover, AtC3H59 OX seedlings had longer primary root length than WT seedlings, whereas atc3h59 mutant seedlings had shorter primary root length than WT seedlings, owing to altered cell division activity in the root meristem. During seed development, AtC3H59 OXs formed larger and heavier seeds than WT. Using yeast two-hybrid screening, we isolated Desi1, a PPPDE family protein, as an interacting partner of AtC3H59. AtC3H59 and Desi1 interacted via their WD40 domain and C-terminal region, respectively, in the nucleus. Taken together, our results indicate that AtC3H59 has pleiotropic effects on seed germination, seedling development, and seed development, and interacts with Desi1 in the nucleus via its entire WD40 domain. To our knowledge, this is the first report to describe the biological functions of the ZFWD protein and Desi1 in Arabidopsis.


2009 ◽  
Vol 297 (1) ◽  
pp. H153-H162 ◽  
Author(s):  
Sabrina Serpillon ◽  
Beverly C. Floyd ◽  
Rakhee S. Gupte ◽  
Shimran George ◽  
Mark Kozicky ◽  
...  

Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O2−)] and the mechanisms underlying O2− production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O2− and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O2− generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9–11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased ( P < 0.05). O2− levels were elevated (70–90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91ds-tat (50 μM) or by the mitochondrial respiratory chain inhibitors antimycin (10 μM) and rotenone (50 μM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 μM) also reduced ( P < 0.05) O2− production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole ( P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O2− generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O2− production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed.


1977 ◽  
Vol 145 (4) ◽  
pp. 983-998 ◽  
Author(s):  
S J Klebanoff

Estradiol binds covalently to normal leukocytes during phagocytosis. The binding involves three cell types, neutrophils, eosinophils, and monocytes and at least two reaction mechanisms, one involving the peroxidase of neutrophils and monocytes (myeloperoxidase [MPO]) and possibly the eosinophil peroxidase, and the second involving catalase. Binding is markedly reduced when leukocytes from patients with chronic granulomatous disease (CGD), severe leukocytic glucose 6-phosphate dehydrogenase deficiency, and familial lipochrome histiocytosis are employed and two populations of neutrophils, one which binds estradiol and one which does not, can be demonstrated in the blood of a CGD carrier. Leukocytes from patients with hereditary MPO deficiency also bind estradiol poorly although the defect is not as severe as in CGD. These findings are discussed in relation to the inactivation of estrogens during infection and the possible role of estrogens in neutrophil function.


Sign in / Sign up

Export Citation Format

Share Document