scholarly journals An Evaluation of Growth Characteristics of Faba Bean Cultivars

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1166
Author(s):  
Asad Shabbir ◽  
Michael Widderick ◽  
Michael J. Walsh

Resistance to herbicides and the lack of new herbicide options have led researchers to explore alternate methods to manage weed populations in large-scale cropping systems. Crop competition is an effective weed management approach that can reduce the pressure on herbicides. Faba bean (Vicia faba L.) is an important winter legume crop in Australia. Crop traits such as, height, biomass, growth rate, tillering capacity, leaf area, and root growth have been suggested as indicators of the competitive ability of crops against weeds. Based on pot studies at Narrabri and Toowoomba, we assessed the growth traits (biomass, height, leaf area, relative growth rate, and branch number) of six faba bean cultivars and ranked them for their potential ability to compete with weeds. PBA Marne and PBA Zahra were identified as highly competitive faba bean cultivars based on their higher overall ranking score achieved at both locations. PBA Nasma and PBA Samira were ranked highly and moderately competitive at Narrabri and Toowoomba sites, respectively. At Narrabri, PBA Nanu was ranked poorly competitive based on its lower biomass, height, and leaf area than the other cultivars. The weed suppressive ability of these cultivars needs to be assessed in the presence of weeds under field conditions.

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 809
Author(s):  
Gaofeng Xu ◽  
Shicai Shen ◽  
Yun Zhang ◽  
David Roy Clements ◽  
Shaosong Yang ◽  
...  

Because cropping systems can greatly affect the establishment and spread of alien species populations, the design of cropping systems to control invasive weeds is an important approach for invasive species management in agro-ecosystems to avoid excessive increases in other control measures such as herbicides. The annual weed Phalaris minor Retz. (P. minor) is one of the most troublesome invasive weed species of winter crops in Yunnan Province, China, but the development of cropping systems for ecological control of this weed have received limited research attention. Here, we studied seed dormancy, germination characteristics and reproductive responses of P. minor to various cropping systems to show how cropping systems could be better designed to control P. minor in China. Our research showed that cropping systems significantly affected seed dormancy in submerged paddy fields. Phalaris minor seed remained dormant and the germination rates (less than 10%) were significantly lower (p < 0.05) than in maize fields and dry, bare soil conditions. Wheat, faba bean and rapeseed crops had no significant influence (p < 0.05) on the seed germination rate of P. minor, but increasing soil depth significantly decreased (p < 0.05) the germination rate and germination index of this weed. Total biomass, spike biomass, spike number and seed number of P. minor were significantly reduced (p < 0.05) with increasing proportions of the three crops (wheat, faba bean and rapeseed), with rapeseed having the strongest inhibition effects among the three crops. The reproductive allocation and reproductive investment of P. minor were also significantly reduced (p < 0.05) in mixed culture with wheat and rapeseed. With increasing proportions of wheat or rapeseed, the specific leaf area of P. minor significantly increased (p < 0.05), but the reverse was true for leaf area and specific leaf weight. Moreover, the net photosynthetic rate, stomatal conductance and transpiration rate for P. minor also decreased significantly (p < 0.05) when grown with wheat or rapeseed. These results suggest that optimal cropping systems design could involve planting rapeseed in conjunction with deep plowing and planting rice (continuous submergence underwater) in summer. Such a system could reduce the field populations and seed bank of P. minor, thus providing a sustainable and environmentally friendly means of suppressing P. minor.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1191
Author(s):  
Jessa Hughes ◽  
Hamid Khazaei ◽  
Albert Vandenberg

A better understanding of the genetics of plant architecture, including height and branching, could improve faba bean breeding for varieties with better fit into specific cropping systems. This study aimed to determine the inheritance and genetic interactions of the sources of the dwarf gene (dwf1) and semi-dwarf gene (dwarf1), and to investigate the genetics of branching in the faba bean. We chose inbred lines IG 12658 (dwarf, carrying dwf1) and Rinrei (semi-dwarf, carrying dwarf1) along with Aurora/2 and IG 114476 as sources of non-dwarf faba bean genotypes and crossed them (Aurora/2 × IG 12658, IG 114476 × IG 12658, Rinrei × IG 12658, IG 114476 × Rinrei, and Rinrei × Aurora/2). IG 114476 was also used as a genetic source of a highly branching phenotype and crossed with IG 12658, Rinrei, and Aurora/2 to study the genetics of branching. Parental lines, F1s, and F2 populations were evaluated under growth chamber and field conditions in 2018. The segregating F2 populations were tested for 3:1 single recessive gene inheritance using Chi-square tests. Both dwarfing/semi-dwarfing genes fit 3:1 recessive, and 15:1 for double recessive. Rinrei was not a true dwarf, and the gene creating the dwarf appearance reduced the initial growth rate, but this corrected over time. Multiple F2 populations were also tested for a 3:1 single dominant gene hypothesis for highly branched phenotypes. These populations showed a bell-shaped phenotypic distribution for branch number, with no discernable classes, and revealed that branching was likely quantitatively controlled. In conclusion, dwarfism and branching in faba bean were controlled qualitatively and quantitatively, respectively.


2021 ◽  
Author(s):  
Swapan Kumar Paul ◽  
Dipali Rani Gupta

Faba bean is one of the multi-purpose oldest crop which is used as a source of dietary protein in human, as fodder and forage for livestock, feed for poultry and for available nitrogen for the biosphere. It is cool season grain legume that is grown in large areas in various countries in the world including a limited locality in Bangladesh. Diverse ecosystem benefits are expected from inclusion faba bean in cropping systems. This article reviews the published work mentioning potential uses of faba bean world-wide, challenges and its cultivation possibilities in Bangladesh.


2011 ◽  
Vol 62 (11) ◽  
pp. 1002 ◽  
Author(s):  
Jeff Werth ◽  
David Thornby ◽  
Steve Walker

Glyphosate resistance will have a major impact on current cropping practices in glyphosate-resistant cotton systems. A framework for a risk assessment for weed species and management practices used in cropping systems with glyphosate-resistant cotton will aid decision making for resistance management. We developed this framework and then assessed the biological characteristics of 65 species and management practices from 50 cotton growers. This enabled us to predict the species most likely to evolve resistance, and the situations in which resistance is most likely to occur. Species with the highest resistance risk were Brachiaria eruciformis, Conyza bonariensis, Urochloa panicoides, Chloris virgata, Sonchus oleraceus and Echinochloa colona. The summer fallow and non-irrigated glyphosate-resistant cotton were the highest risk phases in the cropping system. When weed species and management practices were combined, C. bonariensis in summer fallow and other winter crops were at very high risk. S. oleraceus had very high risk in summer and winter fallow, as did C. virgata and E. colona in summer fallow. This study enables growers to identify potential resistance risks in the species present and management practices used on their farm, which will to facilitate a more targeted weed management approach to prevent development of glyphosate resistance.


2021 ◽  
Vol 58 (Special) ◽  
pp. 143-167
Author(s):  
Mohammad Shahid ◽  
Sushmita Munda ◽  
Rubina Khanam ◽  
Dibyendu Chatterjee ◽  
Upendra Kumar ◽  
...  

Climate change is widely recognized as one of the most pressing issues confronting humanity today. It is considered to be a direct threat to our food production system including rice. Climate change affects rice production in various ways. The variability in temperature and precipitation increases, predictability of seasonal weather patterns reduces and the frequency and intensity of extreme weather events such as droughts, floods and cyclones increases. In India, the effect of natural disasters on agriculture, including disasters caused by climate change has been gradually growing. It is believed that during the mid and end century India's future rice production is projected to reduced by 2.5 to 5% from the current level. As there is less scope for rice area to grow in the future, any growth in rice production will have to come only from productivity gains. Since climate change is a continuous process, the rice production system requires specific adaptation strategies to prevent rice yield losses and its variability. Therefore, it's critical to understand how climate change affects rice crop and to follow better production practises including crop establishment methods, water management, weed management, nutrient management and microbial resources utilization that make cropping systems more resilient to extreme weather events. The spread of climate resilient production technologies would benefit rice production systems' resilience.


1997 ◽  
Vol 33 (4) ◽  
pp. 477-486 ◽  
Author(s):  
S. JACQUES ◽  
R. K. BACON ◽  
L. D. PARSCH

Comparisons of single cropping, double cropping and relay cropping of soyabeans (Glycine max) with wheat (Triticum aestivum) were made at two sites in Arkansas over a two-year period. The comparisons were made using both soyabean blends and their component cultivars. In relay cropping the yields of pure lines of soyabeans were reduced by 17% compared with single-cropped soyabeans, but the yield of wheat in relay cropping was 15% less than in double cropping. Double cropping reduced the branch number, plant height, node number and leaf area of soyabeans compared with single cropping, but relay cropping reduced only node number and leaf area. Both double cropping and relay cropping gave greater land equivalent ratio (LER) values than single cropping, and double cropping gave greater LER values than relay cropping. Net returns were lowest with single cropping and greatest with double cropping. Soyabean blends gave yields similar to the mean of the component genotypes in all three cropping systems, and the net returns of blends were similar to those of the means of component genotypes.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 256 ◽  
Author(s):  
Sebastian Gräfe ◽  
Claus-Martin Eckelmann ◽  
Maureen Playfair ◽  
Mike P. Oatham ◽  
Ramon Pacheco ◽  
...  

Despite the widespread use and strong promotion of the sustainable forest management approach, there are still uncertainties about the actual contribution of current forest management practices to sustainability. We studied the problem of sustainable timber production in four tropical countries (Belize, Guyana, Suriname, and Trinidad and Tobago). Data assessed on experimental plots covering 10 km2 were used to compare management practices of four forest tenure types that commonly exist in the study countries: large scale concessions (LSC), private forests (PR), periodic block system forests (PBS), and community managed forests (CM). As an indicator of sustainable timber production, we calculated the recovery times expected under the initial condition of the stands and compared them with currently practiced cutting cycles. Three growth scenarios were simulated using diameter growth rates (1.6/2.7/4.5 mm year−1) from empirical data from studies in the region. Initial volumes were determined for all commercial trees as well as for commercial trees with a DBH-threshold ≥45 cm. Highest initial volumes were found in LSC and PBS managed forests. Lowest volumes were found in CM and PR forests. Assuming the lowest growth rate for all commercial trees, none of the stands studied reached the initial pre-harvest volumes within the currently practiced cutting cycles. Assuming the highest growth rate for all trees, LSC, PBS, and PR forests reach the initial pre-harvest volume. Looking at the subset of commercial trees with a DBH ≥45 cm, all stands will reach the initial volume within 30 years only if the highest growth rate is assumed. We show that general harvest codes do not guarantee sustainable forest management in the tropics. Local stand conditions must always be one of the guiding principles of sustainable timber utilization. Applying the rigid rules, which do not take into account the current conditions of the stands, entails long-term risk of forest degradation.


Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 578-583 ◽  
Author(s):  
Matthew M. Harbur ◽  
Micheal D. K. Owen

The nitrogen (N) response of competing plants may be affected by photosynthetically active radiation (PAR) availability and maximum potential growth rate, which determine N requirements. The responses of two crop (corn and soybean) and six weed species (common lambsquarters, common waterhemp, giant foxtail, velvetleaf, wild mustard, and woolly cupgrass) in low and high (150 and 450 μmol m−2s−1) PAR levels to daily fertilization with either low or high (0.2 or 7.5 mM) NH4NO3levels were studied. Leaf area of all species responded positively to N by 8 d after emergence (DAE) when grown in high PAR; in low PAR, most species did not respond until 11 DAE. Dry weight and leaf area of all species at 18 DAE were greater with high than with low N. These responses to high N were also greater in high than in low PAR for all species. Dry weights with high N were up to 100% greater in low PAR and up to 700% greater in high PAR than dry weights with low N. These responses suggest that low PAR reduced the benefit of N to the plants. The regression of relative growth rate (RGR) with high N to RGR with low N had a slope that was less than unity (β = 0.79), indicating that species with a higher RGR with high N experienced greater decreases in RGR with low N. Similarly, the sensitivity (change in RGR) of plants grown with high and low N was positively related to RGR with high N. RGR differences among crop and weed species may be related to differences in N requirement that could be exploited for weed management. RGR and seed size were negatively correlated, which may explain previous observations that small-seeded weeds were more sensitive to environmental stress.


2008 ◽  
Vol 146 (3) ◽  
pp. 311-323 ◽  
Author(s):  
N. PHAKAMAS ◽  
A. PATANOTHAI ◽  
K. PANNANGPETCH ◽  
S. JOGLOY ◽  
G. HOOGENBOOM

SUMMARYInformation on the interactions between genotypes and environments for physiological traits of peanut (Arachis hypogaea L.) is limited. The objective of the present study was to evaluate the effects of seasons and genotype×season (G×S) interactions for dynamic growth and development traits of peanut. Fifteen peanut lines varying in maturity duration, seed type and yield level were grown in a field experiment at the Khon Kaen University in Northeast Thailand during the 2002 and 2003 rainy seasons and the 2003 and 2004 dry seasons. Data were recorded on phenological development stages, pod yield and final biomass, and leaf area index (LAI), crop growth rate (CGR), pod growth rate (PGR), partitioning coefficient (PC), pod harvest index (HI), shelling percentage, and specific leaf area (SLA) were determined. Seasonal effects were found for all development and growth traits of the test peanut lines. Crop duration for the dry season was much longer than for the rainy season because of low temperatures during the early growth stage, causing a delay in flowering and a longer period of pod formation. The test peanut lines showed small differences in the duration of vegetative development and pod formation, but varied greatly in the seed filling duration. This period also showed the greatest differential responses to seasons between the peanut genotypes. Crop yields for the 2003 rainy and the 2004 dry seasons were much lower than for the other two seasons because of late leaf spot disease in the 2003 rainy season and cool temperatures at flowering in the 2004 dry season, resulting in poor pod setting, low PGR and low HI. The test peanut lines differed considerably in pod and biomass yields and all the growth traits measured. Significant G×S interactions were also found for all of these traits, though were much smaller than season effect. Regression analyses identified PGR as the dominant physiological trait determining the G×S interaction for pod yield. Exploring marker-assisted selection for this trait is suggested.


Author(s):  
Aparna Baruah ◽  
Jayanta Deka

A field experiment was conducted in Instruction-cum-Research Farm of Assam Agricultural University, Jorhat district, Assam, India during 2014-15 and 2015-16 to identify a suitable combination of ginger and cowpea intercropping and weed management practice to effectively manage the weeds in ginger. A total of 16 numbers of treatment combinations were considered, comprising 4 legume inter-cropping systems and 4 weed management practices. Intercropping of legume crop Cowpea either in between rows of Ginger and incorporated at 40 days after sowing (DAS) or in between alternate rows of Ginger and incorporated at 40 days after sowing (DAS) and pre-emergence application of Metribuzin 500 g ai ha-1 + hand weeding (HW) at 70, 100 and 140 days after planting (DAP) recorded better results in terms of ginger growth and rhizome yield.


Sign in / Sign up

Export Citation Format

Share Document