scholarly journals Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1421
Author(s):  
Khatab Abdalla ◽  
Macdex Mutema ◽  
Pauline Chivenge ◽  
Vincent Chaplot

Despite the positive impact of no-tillage (NT) on soil organic carbon (SOC), its potential to reduce soil CO2 emission still needs enhancing for climate change mitigation. Combining NT with controlled-grazing of crop residues is known to increase nutrient cycling; however, the impacts on soil CO2 effluxes require further exploration. This study compared soil CO2 effluxes and SOC stocks from conventional tillage with free grazing (CTFG), NT with free grazing (NTFG), NT without grazing (NTNG), NT without crop residues (NTNR) and NT with controlled-grazing (NTCG), in South Africa. Soil CO2 effluxes were measured 1512 times over two years using LI-COR 6400XT, once to thrice a month. Baseline SOCs data were compared against values obtained at the end of the trial. Overall, NTCG decreased soil CO2 fluxes by 55 and 29% compared to CTFG and NTNR, respectively. NTCG increased SOCs by 3.5-fold compared to NTFG, the other treatments resulted in SOC depletion. The increase in SOCs under NTCG was attributed to high C input and also low soil temperature, which reduce the SOC mineralization rate. Combining NT with postharvest controlled-grazing showed high potential to increase SOCs, which would help to mitigate climate change. However, it was associated with topsoil compaction. Therefore, long-term assessment under different environmental, crop, and soil conditions is still required.

Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


2000 ◽  
Vol 35 (5) ◽  
pp. 887-894 ◽  
Author(s):  
LENITA JACOB OLIVEIRA ◽  
CLARA BEATRIZ HOFFMANN-CAMPO ◽  
MARIA ALICE GARCIA

To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the European Union, various crop diversification systems such as crop rotation, intercropping and multiple cropping, as well as low-input management practices, have been promoted to sustain crop productivity while maintaining environmental quality and ecosystem services. We conducted a data analysis to identify the benefits of crop associations, alternative agricultural practices and strategies in four selected regions of Europe (Atlantic, Boreal, Mediterranean North and Mediterranean South) in terms of crop production (CP). The dataset was derived from 54 references with a total of 750 comparisons and included site characteristics, crop information (diversification system, crop production, tillage and fertilization management) and soil parameters. We analyzed each effect separately, comparing CP under tillage management (e.g., conventional tillage vs. no tillage), crop diversification (e.g., monoculture vs. rotation), and fertilization management (e.g., mineral fertilization vs. organic fertilization). Compared with conventional tillage (CT), CP was higher by 12% in no tillage (NT), in fine- and medium-textured soils (8–9%) and in arid and semiarid sites located in the Mediterranean Region (24%). Compared to monoculture, diversified cropping systems with longer crop rotations increased CP by 12%, and by 12% in soils with coarse and medium textures. In relation to fertilization, CP was increased with the use of slurry (40%), and when crop residues were incorporated (39%) or mulched (74%). Results showed that conversion to alternative diversified systems through the use of crop rotations, with NT and organic fertilization, results in a better crop performance. However, regional differences related to climate and soil-texture-specific responses should be considered to target local measures to improve soil management.


1989 ◽  
Vol 69 (1) ◽  
pp. 31-38 ◽  
Author(s):  
G. H. GUBBELS ◽  
E. O. KENASCHUK

Field experiments were conducted to determine the effect of mature crop residues and volunteer seedling residues of canola (Brassica napus L.), barley (Hordeum vulgare L.) and flax (Linum usitatissimum L.) on the growth and yield of subsequent flax crops seeded after conventional tillage. A second set of field experiments was also conducted which included both flax and barley as test crops on canola and barley stubble and included an additional comparison between conventional tillage and no tillage. Flax yields were generally lower on canola and flax stubble than on barley stubble with conventional tillage before seeding. Averaged over 6 yr the reduction was 9% on canola stubble. With no tillage prior to seeding, flax yielded as well on canola as on barley stubble. Spring volunteer seedlings of canola and flax often reduced flax yields but fall volunteer growth had no marked effect. Barley yielded better on canola than on its own stubble, and tended to yield better with tillage prior to seeding than without.Key words: Flax, Linum usitatissimum L., crop residues, phytotoxins, tillage practices


1996 ◽  
Vol 36 (8) ◽  
pp. 995 ◽  
Author(s):  
K Thiagalingam ◽  
NP Dalgliesh ◽  
NS Gould ◽  
RL McCown ◽  
AL Cogle ◽  
...  

The results of 5 short-term (4-8 years) experiments and farm demonstrations in which no-tillage technology was compared with conventional or reduced tillage in the semi-arid tropics of the Northern Territory and Far North Queensland, during the mid 1980s to mid 1990s, are reviewed. In the Douglas-Daly and Katherine districts of the Northern Territory, dryland crops of maize, sorghum, soybean and mungbean sown using no-tillage with adequate vegetative mulch on the soil surface have produced yields comparable with, or higher than (especially in drier years), those obtained under conventional tillage. The importance of a surface mulch in ameliorating soil temperature, moisture and fertility, and in reducing soil movement and loss in crop production in the semi-arid tropics was confirmed. Management of mulch (pasture, crop residues and weeds) will be crucial in the application of no-tillage technology to the development of mixed dryland crop and livestock enterprises in the semi-arid tropics.


2016 ◽  
Vol 13 (12) ◽  
pp. 3619-3633 ◽  
Author(s):  
Khatab Abdalla ◽  
Pauline Chivenge ◽  
Philippe Ciais ◽  
Vincent Chaplot

Abstract. The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P<0.05. The difference increased to 29 % in sandy soils from arid climates with low soil organic carbon content (SOCC < 1 %) and low soil moisture, but tillage had no impact on CO2 fluxes in clayey soils with high background SOCC (> 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.


2003 ◽  
Vol 18 (3) ◽  
pp. 129-136 ◽  
Author(s):  
M. (Charlie) A. Arshad ◽  
Rahman H. Azooz

AbstractSpring crop growth is often influenced by water stress and lower soil temperature in the northern Canadian prairies. Tillage system effects on soil temperature, moisture and establishment of barley and canola in silt loam and sandy loam soils in northern British Columbia were investigated in 1992 and 1993. The tillage systems were: no-tillage (NT), modified no-tillage where surface residue was pushed aside from a 7.5cm zone above the planting rows (MNT), and conventional tillage (CT). The MNT and CT had higher weekly maximum and weekly mean seed zone temperatures than NT. Mean weekly maximum seed-zone soil temperature was 1.6°C lower in MNT and 3.7°C lower in NT than in CT during the first 10 weeks after planting (WAP) in 1992. Compared to NT and MNT, barley in CT was slow to establish during the first three WAP in the silt loam in 1992 and 1993, and in the sandy loam in 1992, due to early water stress from low rainfall. Barley emergence was delayed by 6 days in NT and 11 days in CT in 1992 and by 3 days in NT and 7 days in CT in 1993 compared to MNT in the silt loam soil. Early in the growing season, barley growth was retarded more in the CT than NT and MNT at both sites. Canola growth was significantly improved in the MNT over that in the NT and CT in 1993. The MNT was more beneficial for crop establishment during prolonged dry periods than CT, and for emergence and growth compared with NT under extremely wet soil conditions.


2015 ◽  
Vol 12 (18) ◽  
pp. 15495-15535 ◽  
Author(s):  
K. Abdalla ◽  
P. Chivenge ◽  
P. Ciais ◽  
V. Chaplot

Abstract. The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P < 0.05. The difference increased to 29 % in sandy soils from arid climates with low soil organic carbon content (SOCC < 1 %) and low soil moisture, but tillage had no impact on CO2 fluxes in clayey soils with high background SOCC (> 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.


Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ramon Josa ◽  
Gil Gorchs ◽  
Marta Ginovart ◽  
Albert Solé-Benet

AbstractTopsoil macropores of two plots under no-tillage and conventional tillage were analyzed. A leguminous-cereal rotation was applied for six cycles under dry-land farming system (crop residues were removed). The clay-loam soil shows some vertic characteristics. The main goal is to identify the relationship between the top soil macro and meso-pore distribution for the two tillage systems (at the end of sixth cycle of cultivation) with the annual crop production (rainfall in normal growing period and crop production values are included). Unaltered topsoil samples were taken from 0 to 60 mm (row and interrow positions) and from the immediate depth (60 to 110 mm) in both plots (conventional and no-tillage). The morphometric analyses of 66 polished slices were carried out with the aim to identify differences in soil macro and meso-pore organisation.Soil macropores were classified by size (area) and elongation ratio and by form factor and equivalent pore diameter. No appreciable differences were observed. Soil macro and meso-pore distributions of samples were also compared. The main difference observed between topsoil’s treatments was a different macropore size distribution between topsoil positions. The presence of larger macropores was higher in conventional tillage compared to no-tillage. Samples taken from row and deeper positions of conventional tillage show a somewhat higher amount of macropores in the range between 2 to 2.3 mm equivalent pore diameter. Soil macropores contribute to increase soil aeration and soil drying when topsoil is too wet in critical periods of crop development. Conventional tillage (crop residues removed), provides to the topsoil of a larger lateral and vertical variability of macropore distribution than no-tillage topsoil.


2011 ◽  
Vol 91 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Rachid Moussadek ◽  
Rachid Mrabet ◽  
Patrick Zante ◽  
Jean Marie Lamachère ◽  
Yannick Pépin ◽  
...  

Moussadek, R., Mrabet, R., Zante, P., Lamachère, J. M., Pépin, Y., Le Bissonnais, Y., Ye, L., Verdoodt, A. and Van Ranst, E. 2011. Impact of tillage and residue management on the soil properties and water erosion of a Mediterranean Vertisol. Can. J. Soil Sci. 91: 627–635. Soil erosion research on Mediterranean Vertisols under no tillage systems (NT) is still scarce. A rainfall simulator was used on Vertisols to compare water runoff and soil loss in a conventional tillage system (CT), NT system with crop residues removed (NT0), and NT with 50% of crop residues returned to the soil surface (NT50). Runoff and soil loss rates were more than 50% lower under NT50 compared with NT0 and CT. Wet aggregate stability (MWD), soil organic matter (SOM) and soil bulk density (Da) were significantly higher under NT than under CT. A multiple regression analysis showed that when the soil was dry, Da explained 84 and 96% of the variation in water runoff and soil loss, respectively. Under wet soil conditions, MWD explained 47 and 69% of variation in water runoff and soil loss, respectively. Consequently, although NT systems improved soil quality (MWD, SOM) compared with the CT system, returning 50% of crop residues at the soil surface was mandatory under NT to protect these Vertisols against water erosion.


Sign in / Sign up

Export Citation Format

Share Document