scholarly journals Effets du travail du sol et de la gestion des résidus sur les propriétés du sol et sur l’érosion hydrique d'un Vertisol Méditerranéen

2011 ◽  
Vol 91 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Rachid Moussadek ◽  
Rachid Mrabet ◽  
Patrick Zante ◽  
Jean Marie Lamachère ◽  
Yannick Pépin ◽  
...  

Moussadek, R., Mrabet, R., Zante, P., Lamachère, J. M., Pépin, Y., Le Bissonnais, Y., Ye, L., Verdoodt, A. and Van Ranst, E. 2011. Impact of tillage and residue management on the soil properties and water erosion of a Mediterranean Vertisol. Can. J. Soil Sci. 91: 627–635. Soil erosion research on Mediterranean Vertisols under no tillage systems (NT) is still scarce. A rainfall simulator was used on Vertisols to compare water runoff and soil loss in a conventional tillage system (CT), NT system with crop residues removed (NT0), and NT with 50% of crop residues returned to the soil surface (NT50). Runoff and soil loss rates were more than 50% lower under NT50 compared with NT0 and CT. Wet aggregate stability (MWD), soil organic matter (SOM) and soil bulk density (Da) were significantly higher under NT than under CT. A multiple regression analysis showed that when the soil was dry, Da explained 84 and 96% of the variation in water runoff and soil loss, respectively. Under wet soil conditions, MWD explained 47 and 69% of variation in water runoff and soil loss, respectively. Consequently, although NT systems improved soil quality (MWD, SOM) compared with the CT system, returning 50% of crop residues at the soil surface was mandatory under NT to protect these Vertisols against water erosion.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2856
Author(s):  
Judit Alexandra Szabó ◽  
Csaba Centeri ◽  
Boglárka Keller ◽  
István Gábor Hatvani ◽  
Zoltán Szalai ◽  
...  

Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and the comparison of the results is often difficult. The present study aimed to examine the results of two rainfall simulators, testing their sensitivity to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were conducted on the same regosol under both field and laboratory conditions to compare the dominant driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall, various slope gradients, and different soil surface states (moisture content, roughness, and crust state) were chosen as the response parameters, and their driving factors were sought. In terms of the overall erosion process, the runoff, and soil loss properties, we found an agreement between the simulators. However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall simulator may affect the results of the research it is intended for, even if the differences occasioned by various designs may be of a low order.


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 191 ◽  
Author(s):  
Meni Ben-Hur ◽  
Marcos Lado

Soil surface sealing is one of the main causes for low infiltration rate (IR) and high runoff and soil loss under raindrop impact conditions in arid and semiarid regions. Many studies have focused on the effects of soil properties on seal formation under fast wetting conditions. However, in the field, soils can be exposed to different wetting conditions, before an intense rainfall event, which can affect the role of the soil properties on seal formation. The present paper reviews the effects of different initial wetting conditions and their interactions with soil properties on seal formation, IR, runoff, and soil loss in smectitic soils. Fast wetting of soil causes aggregate slaking, which enhances seal formation, runoff, and soil loss under rainfall, mainly in soils with > 40% clay content. An increase in clay content of the soil increases aggregate strength, but at the same time increases the slaking forces. Hence, in soils with low clay content (<40%) and low aggregate stability, raindrop impact alone was sufficient to break down the aggregates and to develop a seal. In contrast, in soils with > 40% clay content and high aggregate stability, slaking plays an important role in aggregate breakdown and seal formation. An increase of raindrop kinetic energy, from 8 to 15.9 kJ/m3, decreased the effect of the slaking forces on seal formation and runoff. It was suggested that the effects of raindrop kinetic energy and of the slaking forces on aggregate disintegration and seal formation are complementary. An increase in soil exchangeable sodium percentage (ESP), from 0.9 to 20.4%, decreased the effect of slaking forces on seal formation and runoff production under rainfall with 15.9 kJ/m3 kinetic energy. Probably, increasing the ESP increased the soil dispersivity, and therefore diminished the effect of the slaking forces on aggregate disintegration and seal formation. Aging (the time since wetting) of soil increased the stability of soil structure, decreased the seal formation, maintained high IR, and diminished soil loss amounts. These effects of soil aging depend on both the prewetting rate of the soil and soil texture.


2008 ◽  
Vol 32 (6) ◽  
pp. 654-677 ◽  
Author(s):  
T. Smets ◽  
J. Poesen ◽  
E. Bochet

Covering the soil surface by rock fragments, organic mulches or vegetation is often done to reduce runoff and soil loss by water erosion compared to a bare soil treatment. The runoff or erosion-reducing effectiveness of these soil surface covers has been investigated for a range of plot lengths under different environmental conditions. Recent research indicates that the effectiveness of soil surface covers in reducing runoff and soil loss by water erosion may be affected by the size of the laboratory or field plots (ie, spatial scale). Therefore, the main objective of this review is to explore to what extent the impact of plot length on the effectiveness of different surface covers (ie, rock fragments, organic mulch and vegetation) in reducing runoff and soil loss by water erosion emerges from a worldwide data set. Furthermore, it is investigated whether there is a significant difference in runoff or erosion-reducing effectiveness between rock fragments, organic mulches and vegetation. Data from 65 experimental studies, investigating the impact of surface cover by rock fragments, organic mulch or vegetation on runoff or soil loss, are collected and analysed in this review. The results indicate that for plot lengths <11 m there is a large variation in the runoff and erosion-reducing effectiveness of a soil cover, depending on various factors and on the larger number of studies conducted on these plots compared to longer field plots. However, with an increasing plot length (up to 50 m) this variation is reduced and surface covers by rock fragments, organic mulches and vegetation become on average more effective in reducing runoff or soil loss by water erosion. A vegetation cover is significantly more effective in reducing runoff rate compared to a rock fragment cover. No other significant differences in runoff or in erosion-reducing effectiveness between the studied soil surface covers are observed. Finally, two equations are proposed describing the possible effect of plot length and cover by rock fragments, organic mulches and vegetation on relative runoff and soil loss by water erosion. These findings have important consequences for the design of runoff and erosion plots, for modelling runoff and soil erosion rates and for scaling up plot data.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.


1990 ◽  
Vol 33 (5) ◽  
pp. 1551 ◽  
Author(s):  
K. C. McGregor ◽  
C. K. Mutchler ◽  
M. J. M. Romkens

Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Roberto Lázaro ◽  
Juan Mora

AbstractIn drylands, water erosion can be a process with important economic and ecological implications, and is very dependent on the soil surface cover. There is broad agreement that biocrusts protect the soil from erosion in a wide range of circumstances. However, there is little information available on the effect of rain and biocrust types on this protective capacity and there is particularly very little knowledge on the erosive effects of runoff on biocrusts, which are expected to be larger in larger drainage areas, on the resistance of biocrusts to the combined effect of raindrops plus runoff flow and on the solute mobilisation by runoff in biocrusts. To answer these questions, we performed 96 rainfall-simulation in situ factorial experiments, including two biocrust types (cyanobacteria and lichens), three rain types (42, 63 and 77 mm h−1, always 20 min rain), four plot lengths (1, 2, 3 and 4 m long) and four replicates. In each experiment, runoff volume was measured and a runoff sample was taken to determine (i) the amount of dry matter in runoff, (ii) the amount of organic matter among the dry matter, (iii) the electrical conductivity, pH and alkalinity in runoff water. The main findings were: biocrusts strongly protected soil against water erosion, even under the most erosive conditions, and the protection increased with the successional development. Biocrusts were very resistant to the impact of raindrops and also to runoff flow, although an emergent hypothesis arose: under the most erosive conditions, a threshold of erodibility could be reached at the cyanobacterial biocrust. The lichen crust also protected the soil against the removal of soil soluble substances. The development of a biocrust could change the chemical composition of the solutes in runoff.


2014 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Pedro Luiz Terra Lima ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
John Quinton

Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE) and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.


Sign in / Sign up

Export Citation Format

Share Document