scholarly journals The Development and Utilization of Saline–Alkali Land in Western Jilin Province Promoted the Sequestration of Organic Carbon Fractions in Soil Aggregates

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2563
Author(s):  
Yunke Qu ◽  
Jie Tang ◽  
Zihao Zhou ◽  
Ben Liu ◽  
Yucong Duan ◽  
...  

Soil samples from T (0~20 cm) and S (20~40 cm) layers of four saline–alkali rice fields (R5, R15, R20, and R35) with different reclamation years were selected to study the distribution of soil aggregates and the contents of readily oxidizable organic carbon (ROC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), potentially mineralizable carbon (PMC), and soil organic carbon (SOC). The effects of large macroaggregate (>2 mm, LMA), small macroaggregate (0.25 to 2 mm, SMA), and microaggregate (<0.25 mm, MA) particle size, soil layer, and soil physicochemical properties on SOC fractions were also analyzed. The results showed that the LMA size in saline–alkali paddy fields were easily decomposed and was unstable due to the influence of the external environment. With the increase in reclamation years, the proportion of LMA in the S layer decreased gradually. The ROC, DOC, MBC and TOC contents of aggregates in the T and S layers gradually increased with the increase in reclamation years, and SOC fractions contents of aggregates in different grain sizes were SMA > LMA > MA. An effective way to increase carbon sink and improve the ecological environment in western Jilin Province is to change the soil environment by planting rice in saline–alkali land.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yan Lu ◽  
Hongwen Xu

Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0–20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.


2004 ◽  
Author(s):  
Yingbo Zhu ◽  
Quansheng Ge ◽  
Jiyuan Liu ◽  
Yunxuan Zhou ◽  
Zhiqiang Gao ◽  
...  

Author(s):  
Yishan Sun ◽  
Xiaojie Li ◽  
Tao Jiang ◽  
Xingming Zheng ◽  
Zhengwei Liang

Electrical conductivity (EC) is not only an important index to evaluate the degree of soil salinization, but also an essential basis for judging whether saline soil can be improved and assess the effect of improvement efforts. Satellite remote sensing provides much information for large scale EC inversion of saline soil, which enables the possibility for evaluating the degree and distribution of soil salinization. Taking the salinized region of western Jilin Province as the study area, 328 salinized soil samples were collected, and the EC was measured in June 2019. The construction of the optimal spectral parameters was based on the correlation between the conductivity and the spectral reflectivity of Sentinel-2 MSI data; after satisfying the normal distribution for the Box-Cox transformation of EC, the inversion model of EC was established by using linear regression model, support vector machine (SVM), regression tree (RT), Gaussian process regression (GPR), and ensemble tree (ET). The verification results of the model on the validation set showed that the performance of GPR was optimal (R2 = 0.66, RMSE = 0.48 mS/cm, MAE=0.52 mS/cm), which increased R2 by 29.04% compared with the traditional linear regression model. Finally, according to the GPR model, the EC results of pixel-level resolution (10 m × 10 m) of saline soil in western Jilin Province were inversed, which provided a scientific basis for the study of the distribution characteristics and improvement scheme of saline soil.


Sign in / Sign up

Export Citation Format

Share Document