scholarly journals Soil and Plant Responses to Phosphorus Inputs from Different Phytase-Associated Animal Diets

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 130
Author(s):  
Dario Fornara ◽  
Elizabeth M. E. Ball ◽  
Christina Mulvenna ◽  
Henry Reyer ◽  
Michael Oster ◽  
...  

The over-supplementation of animal feeds with phosphorus (P) within livestock-production systems leads to high rates of P excretion and thus to high P loads and losses, which negatively impact the natural environment. The addition of phytase to pig and poultry diets can contribute to reducing P excretion; however, cascading effects of phytase on plant–soil systems remain poorly understood. Here, we addressed how three different diets containing various levels of exogenous phytase, i.e., (1) no-phytase, (2) phytase (250 FTU), and (3) superdose phytase (500 FTU) for pigs (Sus scrofa domesticus) and broilers (Gallus gallus domesticus) might affect P dynamics in two different plant–soil systems including comfrey (Symphytum ×uplandicum) and ryegrass (Lolium perenne). We found that differences in phytase supplementation significantly influenced total P content (%) of broiler litter and also pig slurry (although not significantly) as a result of dietary P content. P Use Efficiency (PUE) of comfrey and ryegrass plants was significantly higher under the intermediate ‘phytase’ dose (i.e., commercial dose of 250 FTU) when compared to ‘no-phytase’ and ‘superdose phytase’ associated with pig slurry additions. Soil P availability (i.e., water soluble P, WSP) in both comfrey and ryegrass mesocosms significantly decreased under the intermediate ‘phytase’ treatment following pig slurry additions. Dietary P content effects on P losses from soils (i.e., P leaching) were variable and driven by the type of organic amendment. Our study shows how commercial phytase levels together with higher dietary P contents in pig diets contributed to increase PUE and decrease WSP thus making the plant–soil system more P conservative (i.e., lower risks of P losses). Our evidence is that dietary effects on plant–soil P dynamics are driven by the availability of P forms (for plant uptake) in animal excretes and the type of organic amendment (pig vs. broiler) rather than plant species identity (comfrey vs. ryegrass).

Author(s):  
Márcia H. Beck ◽  
Pedro A. V. Escosteguy ◽  
Deborah P. Dick

ABSTRACT The effect of humic acids (HA) on phosphorus (P) availability is still contradictory; thus, it is necessary to identify the conditions that play a crucial role in this effect. The aim of this study was to investigate the effect of HA application, combined with doses of P, on the content of this nutrient in a Latosol with and without acidity correction. Two experiments were carried out, one with HA from peat and another with HA from mineral charcoal (leonardite). Doses of these acids (0; 1.12 and 5.62 mg C g-1 of soil) and P (26.2 and 104.7 mg P g-1 of soil, 1 and 4-fold higher than recommended, respectively) were tested at soil pH 4.5 and 7.0, in a three-factorial design. The soil was incubated for 20 days and the soil-P content was measured by Mehlich-1 and remaining-P tests. The effect of HAs on P availability varied with the P doses and soil acidity. Humic acids application increases P content in Latosol when P dose is higher than recommended and there is no acidity correction (pH 4.5). However, there is no effect of HAs application on soil-P content when applying the recommended amount of this nutrient, irrespective of the pH value.


2015 ◽  
Vol 51 (3) ◽  
pp. 370-381 ◽  
Author(s):  
ANNY RUTH PAME ◽  
CHRISTINE KREYE ◽  
DAVID JOHNSON ◽  
SIGRID HEUER ◽  
MATHIAS BECKER

SUMMARYSeedling vigor is important to help ensure good crop establishment. In direct-seeded rice, this is particularly relevant when soil conditions are marginal. In Asia, about one third of the area of rainfed rice is situated on unfavorable soils, many of which are low in plant available P. In such environments, as farmers tend to have few resources, options to overcome poor crop establishment should be low cost and preferably seed-based. The P content of seed depends on genotype and can be augmented by soaking seeds in a P-containing solution prior to seeding (P-priming). In addition, the presence of the Pup1 quantitative trait locus can reportedly confer tolerance to low soil P availability. We tested combinations of seed priming (unprimed control, water priming, P-priming), and inherent seed P concentrations in contrasting rice genotypes (DJ123, Sadri Tor Misri), and two near isogenic sister lines of IR74 with (+Pup1) and without (−Pup1) the Pup1 QTL. Treatment effects on germination were studied in Petri dishes, while seedling growth and P accumulation were assessed using pots with P deficient soil. Germination was less than 75% in seeds with low seed P content. Seed priming with both water and P enhanced germination and seedling growth. In plants growing from high P seeds, water priming outperformed P-priming. In Sadri Tor Misri with low seed P, we observed a tendency for better performance in some parameters when P-primed. While the presence of the Pup1 QTL in IR74 increased shoot biomass and total root length, these effects could be further enhanced by water priming. Combining genetic and seed management approaches may contribute to improved rice establishment in P deficient soils but its effectiveness depends on genotype and seed attributes.


2013 ◽  
Vol 16 (2) ◽  
pp. 107-114
Author(s):  
. Marsi ◽  
. Sabaruddin

Ultisols and Inceptisols were used to investigate the adsorption-desorption capacity of P and the effect of organic matter on the dynamics of P availability in tropical acid soils. The experiment consisted of two sub-experiments. Sub-experiment I was to study the adsorption-desorption capacity of Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Therefore, surface soils (0 to 30 cm) of each tested soil were treated with 0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 170, and 200 mg P kg-1 of soil. Sub-experiment II was to study the effects of organic matterapplication (0, 5, 10, and 15 Mg ha-1) on the dynamics of available P following 60d incubation under room temperature.P fertilizer application significantly affected water soluble-P (WSP) (p<0.01) and soil available P-Bray and Kurtz No. 1 (BKP) (p<0.01) in the three tested soils. The different response of both WSP and BKP confirmed that the soils tested in the current experiment had different soil P buffering capacity in the order of Tidal-lowlandInceptisol>Upland Ultisol>fresh-water Lowland Inceptisol. OM application increased the BKP in all tested soils as compared to the control. Differences in pattern of soil available P dynamics over time were detected between upland soil and two lowland soils used in the current experiment.Keywords: Adsorption-desorption, Inceptisols, organic matter, Ultisols


2021 ◽  
Author(s):  
Dan Liao ◽  
Chaochun Zhang ◽  
Hans Lambers ◽  
Fusuo Zhang

Abstract Background and aims Root residues are an important factor influencing soil phosphorus (P) availability for crop uptake, but how the residues from different species combinations in sole cropping or intercropping systems affect soil P pools remains unclear. Methods Maize and faba bean were planted as either sole crops or intercrops in a P-deficient calcareous soil with and without addition of corresponding previous crop (pre-crop) roots. This was repeated in three cultivations cycles in a greenhouse experiment. Plants sampled in each experiment were analyzed for biomass and P content, and soils sampled from all treatments in the last cultivation were analyzed for soil characteristics. Results Addition of a mixture of intercrop root residues increased biomass, total P content, microbial biomass P concentration and soil acid phosphatase activity, compared with addition of root residues of a single crop. The Hedley soil P fractions from three continuous cultivation cycles differed, depending on root residue source. The sole maize root residue with high C/P ratio caused a considerable depletion of inorganic P (NaHCO3-Pi, NaOH-Pi and 1 M HCl-Pi), and the sole faba bean root residue with lower C/P ratio caused a large depletion in Resin-P and NaHCO3-Po fractions, and the root residue of intercrops with a medium C/P ratio depleted more of the NaHCO3-Po and conc. HCl-Po fractions. However, without root residues, sole faba bean depleted more of the Resin-P, NaHCO3-Pi, NaOH-Pi and NaHCO3-Po fractions than the other two cropping systems did because of its higher P content. Conclusions Adding root residues of mixed species accelerated soil organic P mineralization (NaHCO3-Po and conc. HCl-Po) by increasing microbial biomass P concentrations and acid phosphatase activities, and thus enhanced the intercropping advantage in terms of biomass and P content in a P-deficient soil.


2008 ◽  
Vol 14 (2) ◽  
pp. 181 ◽  
Author(s):  
H. SOINNE ◽  
T. PELTOVUORI

The potential effects of freezing on phosphorus (P) chemistry in Finnish soils are not well known. We studied the effects of multiple freeze-thaw cycles on soil P chemistry in a laboratory incubation experiment with one organic and one mineral surface soil. The soils were incubated at +5°C or at alternating +5/–20°C temperatures for 24 weeks, either without amendment or amended with pig slurry or with commercial compound fertilizer (NPK 20–3–9). After incubation, the soils were analyzed for water-soluble reactive and unreactive P, and acid ammonium acetate soluble P (PAAA). Freezing and thawing of soils during the incubation had no significant effect on any of the water-soluble P fractions or PAAA. The outcome was most likely a consequence of the good P status of the soils, which masked the gentle effects of freezing. According to these results, the time of soil sampling (fall vs. spring) has no effect on P test results on soils with a good P status. Concentrations of soluble P after incubation were roughly twice as high in the slurry treatments than in the fertilizer treatments, demonstrating potentially better long-term availability of slurry P.;


2014 ◽  
Vol 11 (11) ◽  
pp. 15911-15943
Author(s):  
M. S. Studer ◽  
R. T. W. Siegwolf ◽  
M. Leuenberger ◽  
S. Abiven

Abstract. Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides x nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After one week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63± 8‰, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable diffusion of vapour into the leaves (58–69%). The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This either indicates the synthesis of more condensed compounds (lignin vs. cellulose) in roots and stems, or be the result of O and H exchange and fractionation processes during transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest for the fields of plant physiology, paleoclimatic reconstruction or soil science.


2009 ◽  
Vol 89 (5) ◽  
pp. 589-601 ◽  
Author(s):  
S O Olatuyi ◽  
O O Akinremi ◽  
D N Flaten ◽  
G H Crow

Plant availability of phosphorus (P) in calcareous soil can be improved by modifying the chemical environment of the soil-P fertilizer reaction zone through the banding of non-phosphate fertilizer with P. We investigated the solubility and diffusive transport of P as influenced by addition of two sulphate salts [(NH4)2SO4 and K2SO4] to NH4H2PO4 and KH2PO4. The salts were applied to a series of wax columns packed with approximately 223 g of Ca2+-saturated cation exchange resin-sand mixture buffered with CaCO3. The background pH of the mixture was 8.8. Each treatment contained approximately 204.5 mg P kg-1 soil, while 632.3 mg SO42- kg-1 soil was added to each P source for treatments containing the dual bands to provide a molar concentration of P and SO42- of 6.6 mmol kg-1 soil. After 2 wk of incubation, column segmentation and extraction showed that H+ moved deeper into the columns on addition of the sulphate salts compared with adding NH4H2PO4 or KH2PO4 alone. The maximum depth of P penetration in the columns containing NH4H2PO4 was 4.2 cm, while P transport in the columns treated with KH2PO4 was restricted to the top 4.0 cm depth. Addition of (NH4)2SO4 or K2SO4 to NH4H2PO4 increased the concentration of water-extractable P by 43 and 21%, respectively, above that in NH4H2PO4 alone. Similarly, addition of (NH4)2SO4 or K2SO4 increased the concentration of water-soluble P by 48 and 41%, respectively, above the amount in KH2PO4 alone. The increased water solubility of P on addition of the sulphate salts was attributed to anion competition between HPO42- and SO42- for precipitation with Ca2+. We also observed ionic competition between NH4+ and K+ when both cations were added together, causing K+ to travel farther into the column and with increased solubility than when applied alone. Our results showed that anion and cation competition can be used to modify the transport and solution concentration of ions through dual banding. These results also suggested that the combination of anion competition by SO42- and pH reduction due to salt effect could have a positive influence on the availability of P in calcareous soils. Key words: Phosphate, sulphate, columns, solubility, diffusive transport, resin


Scientifica ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhiwei Ge ◽  
Ran An ◽  
Shuiyuan Fang ◽  
Pengpeng Lin ◽  
Chuan Li ◽  
...  

Aquatic plants play an essential role and are effective in mitigating lake eutrophication by forming complex plant-soil system and retaining total nitrogen (TN) and phosphorus (TP) in soils to ultimately reduce their quantities in aquatic systems. Two main vegetation types (Phragmites australiscommunity andP. australis+Typha latifoliacommunity) of Qin Lake wetland were sampled in this study for the analysis of TN and TP contents and reserves in the wetland soils. The results showed that (1) the consumption effect of Qin Lake wetland on soluble N was much more significant than on soluble P. (2) The efficiency of TN enrichment in wetland soil was enhanced by vegetation covering ofP. australisandT. latifolia. (3) Wetland soil P was consumed byP. australiscommunity and this pattern was relieved with the introduction ofT. latifolia. (4) According to the grey relativity analysis, the most intensive interaction between plants and soil occurred in summer. In addition, the exchange of N in soil-vegetation system primarily occurred in the 0–15 cm soil layer. Our results indicated that vegetation covering was essential to the enrichment of TN and TP, referring to the biology-related fixation in the wetland soil.


2015 ◽  
Vol 24 (6) ◽  
pp. 819 ◽  
Author(s):  
Anthony Manea ◽  
Saskia Grootemaat ◽  
Michelle R. Leishman

Fire is a common process that shapes the structure of grasslands globally. Rising atmospheric CO2 concentration may have a profound influence on grassland fire regimes. In this study, we asked (1) does CO2 and soil P availability alter leaf flammability (ignitibility and fire sustainability); (2) are leaf tissue chemistry traits drivers of leaf flammability, and are they modified by CO2 and soil P availability?; (3) does CO2 and soil P availability alter fuel load accumulation in grasslands; and (4) does CO2 and soil P availability alter the resprouting ability of grassland species? We found that leaf flammability increased under elevated CO2 levels owing to decreased leaf moisture content and foliar N, whereas fuel load accumulation increased owing to decreased foliar N (slower decomposition rates) and increased aboveground biomass production. These plant responses to elevated CO2 levels were not modified by soil P availability. The increase in leaf flammability and fuel load accumulation under elevated CO2 levels may alter grassland fire regimes by facilitating fire ignition as well as shorter fire intervals. However, the increased root biomass of grasses under elevated CO2 levels may enhance their resprouting capacity relative to woody plants, resulting in a shift in the vegetation structure of grasslands.


2003 ◽  
Vol 83 (5) ◽  
pp. 589-600 ◽  
Author(s):  
I. Royer ◽  
R. R. Simard ◽  
G. M. Barnett ◽  
D. Cluis ◽  
D. A. Angers

Repeated application of animal manure or mineral P fertilizer can significantly increase soil P content and enhance the risk of water contamination. The objectives of this study were to evaluate the long-term (8 yr) effect of liquid hog manure (LHM) applied at high rates and its timing of application on the soil P status and on the risk index of water contamination by P. Spring (S), fall (F), or spring + fall (SF) applications of LHM on a silt loam (Humo Ferric Podzol) were compared to recommended application rates of mineral fertilizer (MF) in a continuous corn (Zea mays L.) system. Total P applied ranged from 7 to 34 kg P ha-1 yr-1 in the MF treatment and from 106 to 150 kg P haP ha-1 yr-1 in the LHM treatments. Soil samples were collected to 1.0-m depth after one, six and eight annual applications. Applying high rates of LHM for 8 consecutive years resulted in a significant (P ≤ 0.10) enrichment in total soil P content relative to MF at the 0- to 20-cm soil depth. The effects of LHM on labile P forms (water soluble P, Pw and Mehlich-III extractable P, M3P) were also restricted to the 0- to 20-cm depth with values as high as 11 mg kg-1 for Pw and 241 mg kg-1 for M3P in the LHM plots. The degree of soil P saturation, evaluated as Pox/(Alox+Feox), increased to 15% in the 0- to 20-cm depth after 6 to 8 yr of LHM application. Saturation values of 12 to 15% were also found at the 80- to 100-cm depth in some LHM plots. The P index rating was always medium (109 to 216) in soil receiving MF but was high (217 to 432) after 6 to 8 yr of heavy LHM applications, which indicates a high potential risk of soil P transfer to surface water. The results of this study showed that timing of application had little influence on long-term soil P status. Overall, applying LHM at high rates greatly increased total soil P, the degree of soil P saturation, and the labile P forms in the surface horizons but had little effects below 20 cm. Key words: Hog manure, soil P, long-term effects, labile P, P saturation


Sign in / Sign up

Export Citation Format

Share Document