scholarly journals Effects of Reduced Tillage on Weed Pressure, Nitrogen Availability and Winter Wheat Yields under Organic Management

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 180 ◽  
Author(s):  
Merel Hofmeijer ◽  
Maike Krauss ◽  
Alfred Berner ◽  
Joséphine Peigné ◽  
Paul Mäder ◽  
...  

Reduced tillage reduces soil erosion and increases topsoil organic matter compared with conventional tillage. However, yields are often reported to be lower, presumably, due to increased weed pressure and a slower N mineralization under organic farming conditions. The effects of reduced tillage compared with ploughing on weed infestation and winter wheat performance at four different crop stages, i.e., tillering, stem elongation, flowering, and harvest, was monitored for a single season in an eleven-year-old organic long-term tillage trial. To disentangle the effects of weed presence on crop yield and potential crop performance, subplots were cleaned from weeds during the whole cropping season. Weed biomass was consistently higher under reduced tillage. Soil mineral nitrogen contents under reduced tillage management were higher, which could be explained by the earlier ley termination in autumn compared with the conventional tillage system. Nitrogen status of wheat assessed with SPAD measurements was consequently higher under reduced tillage throughout the season. At harvest, wheat biomass and grain yield were similar in both tillage systems in the presence of weeds, but 15–18% higher in the reduced tillage system when weeds were removed. The negative impact of weeds on yields were not found with conventional tillage with a low weed infestation. Results suggest that reduced tillage can provide equivalent and even higher yields to conventional tillage in organically managed winter wheat if weed management is improved and good nutrient supply is assured.

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 635
Author(s):  
Jolanta Bojarszczuk ◽  
Janusz Podleśny

The aim of the paper was to determine weed infestation expressed by weeds number and weed weight and other index under a three different tillage system: no-tillage (NT), reduced tillage (RT), and ploughing tillage (CT) in two legume species crops: pea and narrowed-leaved lupine. The research proved that growing legume under no-tillage conditions caused the increasing weed infestation. Weather conditions in each of the study years were shown to influence the weed infestation. The dry weight of weeds was higher in narrow-leaved lupine by 7% in flowering stage assessment and by 6% before harvest than in pea crop. The weeds number in the conventional tillage system in the flowering stage in pea and lupine crops was 24 and 26 plants·m−2, respectively, under the reduced tillage conditions it was 33 and 29% higher, while under no-tillage it was 58 and 67% higher. In all tillage systems the dominant species were Chenopodium album L., Viola arvensis L., Anthemis arvensis L., and Cirsium arvense L. The results prove that soil tillage system affect weed infestation of legume crops.


2019 ◽  
Vol 10 (1) ◽  
pp. 107-121 ◽  
Author(s):  
J. Salonen ◽  
E. Ketoja

Abstract Adoption of reduced tillage in organic cropping has been slow, partly due to concerns about increasing weed infestation. Undersown cover crops (CCs) are considered to be a feasible option for weed management but their potential for weed suppression is insufficiently investigated in low-till organic cropping. The possibilities to reduce primary tillage by introducing CCs to maintain weed infestation at a level that does not substantially jeopardize crop yield were studied in a field experiment in southern Finland during 2015–2017. Eight different CC mixtures were undersown in cereals and the response in weed occurrence was consecutively assessed in spring barley, winter wheat, and finally, as a subsequent effect, in spring wheat. Growth of CCs was too slow to prevent the flush of early emerging weeds in spring barley whereas in winter wheat, CCs succeeded in hindering the growth of weeds. However, CCs could not prevent the increase of perennial weeds in a reduced tillage system in which the early growth of spring wheat was retarded in cool 2017. Consequently, after 2 years of reduced tillage, weed biomass was about 2.6 times higher and spring wheat yield was 30% lower than in plowed plots, respectively. No major differences in weed control efficacy among CC treatments were evident. A grain yield benefit was recorded after repeated use of leguminous CCs. The need for long-term field studies remains of particular interest regarding post-harvest performance and influence of CCs on perennial weeds before the inversion tillage.


2015 ◽  
Vol 29 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Drew J. Lyon ◽  
Frank L. Young

Spring barley can be used to diversify and intensify winter wheat-based production systems in the U.S. Pacific Northwest. The objective of this study was to describe the effects of tillage system and weed management level (WML) on weed control and spring barley grain yield when grown in a winter wheat-spring barley-spring dry pea rotation. A long-term integrated pest management field study examined the effects of three WMLs (minimum, moderate, and maximum) and two tillage systems (conservation and conventional) on weed control and barley grain yield. Total weed biomass at harvest was 8.0 and 59.7 g m−2for the maximum and minimum WMLs, respectively, in the conservation tillage system, but was similar and averaged 12.2 g m−2for all three WMLs in the conventional tillage system. Despite greater weed biomass with minimum weed management in the conservation tillage system, barley grain yields averaged 5,060 and 4,780 kg ha−1for the conservation tillage and conventional tillage systems, respectively. The benefits of conservation tillage require adequate herbicide inputs.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Felicia Chețan ◽  
Cornel Chețan ◽  
Ileana Bogdan ◽  
Adrian Ioan Pop ◽  
Paula Ioana Moraru ◽  
...  

The regional agroecological conditions, specific to the Transylvanian Plain, are favorable to soybean crops, but microclimate changes related to global warming have imposed the need for agrotechnical adaptive measures in order to maintain the level of soybean yield. In this study, we consider the effect of two soil tillage systems, the seeding rate, as well as the fertilizer dosage and time of application on the yield and quality of soybean crops. A multifactorial experiment was carried out through the A × B × C × D − R: 3 × 2 × 3 × 3 − 2 formula, where A represents the year (a1, 2017; a2, 2018; and a3, 2019); B represents the soil tillage system (b1, conventional tillage with mouldboard plough; b2, reduced tillage with chisel cultivator); C represents the fertilizer variants (c1, unfertilized; c2, one single rate of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus; and c3, two rates of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus (at sowing) + 46 kg ha−1 of nitrogen at V3 stage); D represents the seeding rate (1 = 45 germinating grains (gg) m−2; d2 = 55 gg m−2; and d3 = 65 gg m−2); and R represents the replicates (r1 = the first and r2 = the second). Tillage had no effect, the climate specific of the years and fertilization affected the yield and the quality parameters. Regarding the soybean yield, it reacted favorably to a higher seeding rate (55–65 gg m−2) and two rates of fertilization. The qualitative characteristics of soybeans are affected by the fertilization rates applied to the crop, which influence the protein and fiber content in the soybean grains. Higher values of protein content were recorded with a reduced tillage system, i.e., 38.90 g kg−1 DM in the variant with one single rate of fertilization at a seeding rate of 45 gg per m−2 and 38.72 g kg−1 DM in the variant with two fertilizations at a seeding rate of 65 gg m−2.


2013 ◽  
Vol 59 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
J. Holec ◽  
L. Tyšer

An aggregated distribution pattern of weed populations provides opportunity to reduce the herbicide application if site-specific weed management is adopted. This work is focused on the practical testing of site-specific weed management in a winter wheat and the optimisation of the control thresholds. Patch spraying was applied to an experimental field in Central Bohemia. Total numbers of 512 application cells were arranged into 16 blocks, which allowed the randomisation of four treatments in four replications. Treatment 1 represented blanket spraying and the other treatments differed by the herbicide application thresholds. The weed infestation was estimated immediately before the post-emergence herbicide application. Treatment maps for every weed group were created based on the weed abundance data and relevant treatment thresholds. The herbicides were applied using a sprayer equipped with boom section control. The herbicide savings were calculated for every treatment and the differences in the grain yield between the treatments were tested using the analysis of variance. The site-specific applications provided herbicide savings ranging from 15.6% to 100% according to the herbicide and application threshold used. The differences in yield between the treatments were not statistically significant (P = 0.81). Thus, the yield was not lowered by site-specific weed management.


2014 ◽  
Vol 153 (5) ◽  
pp. 862-875 ◽  
Author(s):  
J. BRENNAN ◽  
P. D. FORRISTAL ◽  
T. McCABE ◽  
R. HACKETT

SUMMARYField experiments were conducted between 2009 and 2011 in Ireland to compare the effects of soil tillage systems on the grain yield, nitrogen use efficiency (NUE) and nitrogen (N) uptake patterns of spring barley (Hordeum vulgare) in a cool Atlantic climate. The four tillage treatments comprised conventional tillage in spring (CT), reduced tillage in autumn (RT A), reduced tillage in spring (RT S) and reduced tillage in autumn and spring (RT A+S). Each tillage system was evaluated with five levels of fertilizer N (0, 75, 105, 135 and 165 kg N/ha). Grain yield varied between years but CT had a significantly higher mean yield over the three years than the RT systems. There was no significant difference between the three RT systems. Tillage system had no significant effect on the grain yield response to fertilizer N. As a result of the higher yields achieved, the CT system had a higher NUE than the RT systems at all N rates. There was no significant difference in NUE between the three RT systems. Conventional tillage had significantly higher nitrogen uptake efficiency (NUpE) than RT A and a significantly higher nitrogen utilization efficiency (NUtE) than all three RT systems. Crop N uptake followed a similar pattern each year. Large amounts of N were accumulated during the vegetative growth stages while N was lost after anthesis. Increased N rates had a positive effect on N uptake in the early growth stages but tended to promote N loss later in the season. The CT system had the highest N uptake in the initial growth stages but its rate of uptake diminished at a faster rate than the RT systems as the season progressed. Tillage system had an inconsistent effect on crop N content during the later growth stages. On the basis of these results it is concluded that the use of non-inversion tillage systems for spring barley establishment in a cool oceanic climate remains challenging and in certain conditions may result in a reduction in NUE and lower and more variable grain yields than conventional plough-based systems.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


2016 ◽  
pp. 95-99
Author(s):  
Géza Tuba ◽  
Györgyi Kovács ◽  
József Zsembeli

The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015. We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.


2018 ◽  
Vol 71 (3) ◽  
Author(s):  
Dorota Gawęda ◽  
Andrzej Woźniak ◽  
Elżbieta Harasim

In-crop weed infestation is affected by both habitat conditions and agronomic practices, including the forecrop and tillage treatments used. This study evaluated the effect of the forecrop and the tillage system on species composition, number and dry weight of weeds in a winter wheat ‘Astoria’. A field study was carried out over the period 2014–2017 at the Uhrusk Experimental Farm (SE Poland), on a mixed rendzina soil with a grain-size distribution of sandy loam. Wheat was grown in a four-course crop rotation: soybean – winter wheat – rapeseed – winter wheat. The experimental factors were as follows: a forecrop of winter wheat (soybean and winter rapeseed) and a tillage system (ploughing and no-tillage). <em>Avena fatua</em> was the most frequently occurring weed in the wheat crop sown after soybean, whereas after winter rapeseed it was <em>Viola arvensis</em>. <em>Viola arvensis</em> was the dominant weed under both tillage systems. In all experimental treatments, the species <em>Viola arvensis</em> and <em>Cirsium arvense</em> were characterized by the highest constancy (Constancy Class V and IV), and also <em>Veronica arvensis</em> after the previous winter rapeseed crop. In the wheat crop sown after winter rapeseed, the number of weeds was found to be higher by 62.1% and the weed dry weight higher by 27.3% compared to these parameters after the previous soybean crop. A richer floristic composition of weeds was also observed in the stand after winter rapeseed. Under conventional tillage conditions, compared to no-tillage, the number of weeds was found to be lower by 39.7% and their dry weight by 50.0%. An increase in the numbers of the dominant weed species was also noted in the untilled plots.


2014 ◽  
Vol 67 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Tomasz R. Sekutowski ◽  
Janusz Smagacz

An experiment, conducted over the period 2008–2010, evaluated the effect of tillage system on the occurrence and species composition of anthropophytes in winter wheat, maize and spring wheat. Regardless of crop plant and tillage system, anthropophytes (73.9%), represented by archaeophytes and kenophytes, were the main component of the flora in the crops studied, whereas apophytes accounted for the remaining 26.1%. Most archaeophytes (13 species) were found in the spring wheat crop under no-tillage, while their lowest number (6 species) occurred in the spring wheat crop under conventional tillage. The only kenophyte, <em>Conyza canadensis</em>, was found to occur in the spring wheat and maize crops in the no-tillage system. The following taxa were dominant species among archeophytes: <em>Geranium pusillum</em>, <em>Anthemis arvensis, </em>and <em>Viola arvensis </em>(regardless of tillage system and crop plant), <em>Anthemis arvensis </em>(in spring wheat – conventional tillage), <em>Echinochloa crus-galli </em>and <em>Setaria glauca </em>(in maize – reduced tillage and no-tillage), <em>Chenopodium album </em>(in maize – no-tillage) as well as <em>Apera spica-venti</em>, <em>Anthemis arvensis </em>and <em>Papaver rhoeas </em>(in winter wheat – no-tillage).


Sign in / Sign up

Export Citation Format

Share Document