scholarly journals The Management Strategies of Pearl Millet Farmers to Cope with Seasonal Rainfall Variability in a Semi-Arid Agroclimate

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 400 ◽  
Author(s):  
Festo Richard Silungwe ◽  
Frieder Graef ◽  
Sonoko Dorothea Bellingrath-Kimura ◽  
Siza Donald Tumbo ◽  
Frederick Cassian Kahimba ◽  
...  

Rainfed agriculture constitutes around 80% of the world’s agricultural land, achieving the lowest on-farm crop yields and greatest on-farm water losses. Much of this land is in developing countries, including sub-Saharan Africa (SSA), where hunger is chronic. The primary constraint of rainfed agriculture—frequently experienced in SSA—is water scarcity, heightened by the unpredictability of season onset, erratic rainfall, as well as the inability of farmers to provide adequate soil and crop management. Farmers react differently to constraints, making a variety of choices—including the timing of planting, type of land cultivation, fertilization, and scattered fields, among many others. Limited information is available on the combined effects of these strategies for improving crop yield and water use efficiency (WUE). An experiment was co-conducted with farmers over four consecutive rainy seasons (2014–2018) in Tanzania, to evaluate these strategies for single and joint effects in improving yield and WUE on rainfed pearl millet (Pennisetum glaucum (L.) R.Br.). The treatments used were flat cultivation both without and with microdosing, as well as tied ridging without and with microdose interaction, with different planting dates depending on farmers’ decisions. Results show that farmers react differently to the early, normal, or late onset of the rainy season, and cumulative rainfall during its onset, which affects their decisions regarding planting dates, yield, and WUE. Microdose fertilization increases both the yield and WUE of pearl millet significantly, with greater effects obtained using tied ridging compared to flat cultivation. For low-income smallholder farmers in a semi-arid agroclimate, using tied ridging with microdosing during early planting is an effective response to spatiotemporal rainfall variability and poor soils.

2014 ◽  
Vol 53 (3) ◽  
pp. 598-613 ◽  
Author(s):  
Moussa Waongo ◽  
Patrick Laux ◽  
Seydou B. Traoré ◽  
Moussa Sanon ◽  
Harald Kunstmann

AbstractIn sub-Saharan Africa, with its high rainfall variability and limited irrigation options, the crop planting date is a crucial tactical decision for farmers and therefore a major concern in agricultural decision making. To support decision making in rainfed agriculture, a new approach has been developed to optimize crop planting date. The General Large-Area Model for Annual Crops (GLAM) has been used for the first time to simulate maize yields in West Africa. It is used in combination with fuzzy logic rules to give more flexibility in crop planting date computation when compared with binary logic methods. A genetic algorithm is applied to calibrate the crop model and to optimize the planting dates at the end. The process for optimizing planting dates results in an ensemble of optimized planting rules. This principle of ensemble members leads to a time window of optimized planting dates for a single year and thereby potentially increases the willingness of farmers to adopt this approach. The optimized planting date (OPD) approach is compared with two well-established methods in sub-Saharan Africa. The results suggest earlier planting dates across Burkina Faso, ranging from 10 to 20 days for the northern and central part and less than 10 days for the southern part. With respect to the potential yields, the OPD approach indicates that an average increase in maize potential yield of around 20% could be obtained in water-limited regions in Burkina Faso. The implementation of the presented approach in agricultural decision support is expected to have the potential to improve agricultural risk management in these regions dominated by rainfed agriculture and characterized by high rainfall variability.


2019 ◽  
Vol 11 (16) ◽  
pp. 4330
Author(s):  
Festo Richard Silungwe ◽  
Frieder Graef ◽  
Sonoko Dorothea Bellingrath-Kimura ◽  
Emmanuel A Chilagane ◽  
Siza Donald Tumbo ◽  
...  

Drought and heat-tolerant crops, such as Pearl millet (Pennisetum glaucum), are priority crops for fighting hunger in semi-arid regions. Assessing its performance under future climate scenarios is critical for determining its resilience and sustainability. Field experiments were conducted over two consecutive seasons (2015/2016 and 2016/2017) to determine the yield responses of the crop (pearl millet variety “Okoa”) to microdose fertilizer application in a semi-arid region of Tanzania. Data from the experiment were used to calibrate and validate the DSSAT model (CERES Millet). Subsequently, the model evaluated synthetic climate change scenarios for temperature increments and precipitation changes based on historic observations (2010–2018). Temperature increases of +0.5 to +3.0 °C (from baseline), under non-fertilized (NF) and fertilizer microdose (MD) conditions were used to evaluate nine planting dates of pearl millet from early (5 December) to late planting (25 February), based on increments of 10 days. The planting date with the highest yields was subjected to 49 synthetic scenarios of climate change for temperature increments and precipitation changes (of −30% up to +30% from baseline) to simulate yield responses. Results show that the model reproduced the phenology and yield, indicating a very good performance. Model simulations indicate that temperature increases negatively affected yields for all planting dates under NF and MD. Early and late planting windows were more negatively affected than the normal planting window, implying that temperature increases reduced the length of effective planting window for achieving high yields in both NF and MD. Farmers must adjust their planting timing, while the timely availability of seeds and fertilizer is critical. Precipitation increases had a positive effect on yields under all tested temperature increments, but Okoa cultivar only has steady yield increases up to a maximum of 1.5 °C, beyond which yields decline. This informs the need for further breeding or testing of other cultivars that are more heat tolerant. However, under MD, the temperature increments and precipitation change scenarios are higher than under NF, indicating a high potential of yield improvement under MD, especially with precipitation increases. Further investigation should focus on other cropping strategies such as the use of in-field rainwater harvesting and heat-tolerant cultivars to mitigate the effects of temperature increase and change in precipitation on pearl millet yield.


Having broadly stabilized inflation over the past two decades, many policymakers in sub-Saharan Africa are now asking more of their monetary policy frameworks. They are looking to avoid policy misalignments and respond appropriately to both domestic and external shocks, including swings in fiscal policy and spikes in food and export prices. In many cases they are finding current regimes—often characterized as ‘money targeting’—lacking, with opaque and sometimes inconsistent objectives, inadequate transmission of policy to the economy, and difficulties in responding to supply shocks. At the same time, little existing research on monetary policy is targeted to low-income countries. What do we know about the empirics of monetary transmission in low-income countries? (How) Does monetary policy work in countries characterized by a huge share of food in consumption, underdeveloped financial markets, and opaque policy regimes? (How) Can we use methods largely derived in advanced countries to answer these questions? And (how) can we use the results to guide policymakers? This book draws on years of research and practice at the IMF and in central banks from the region to shed empirical and theoretical light on these questions and to provide practical tools and policy guidance. A key feature of the book is the application of dynamic general equilibrium models, suitably adapted to reflect key features of low-income countries, for the analysis of monetary policy in sub-Saharan African countries.


Oryx ◽  
2020 ◽  
pp. 1-10
Author(s):  
P. Christy Pototsky ◽  
Will Cresswell

Abstract We tested if peer-reviewed conservation research output has increased in sub-Saharan African countries over the last 30 years in response to increased development. We carried out a bibliometric analysis to identify the number of conservation research papers published by national authors of 41 sub-Saharan African countries during 1987–2017, to provide an index of national conservation research output. We identified country-specific development factors influencing these totals, using general linear modelling. There were positive relationships between conservation research output and population size, GDP, literacy rate, international tourism receipts and population growth rate, and negative relationships with urban population and agricultural land cover, in total explaining 77% of variation. Thirty-eight per cent of countries contributed < 30 conservation research papers (of 12,701) in 30 years. Analysis of trends in primary authorship in a random subsample of 2,374 of these papers showed that primary authorship by sub-Saharan African authors has increased significantly over time but is now at a lower rate than primary authorship for authors from countries outside the country associated with the search term, usually a European or North American country. Overall, 46% of papers had national primary authors, but 67% of these were South African. The results show that conservation research output in sub-Saharan Africa overall is increasing but only significantly in a few countries, and is still dominated by non-national scientists, probably as a result of a lack of socio-economic development.


Author(s):  
Lawrence Omo-Aghoja ◽  
Emuesiri Goodies Moke ◽  
Kenneth Kelechi Anachuna ◽  
Adrian Itivere Omogbiya ◽  
Emuesiri Kohworho Umukoro ◽  
...  

Abstract Background Coronavirus disease (COVID-19) is a severe acute respiratory infection which has afflicted virtually almost all nations of the earth. It is highly transmissible and represents one of the most serious pandemics in recent times, with the capacity to overwhelm any healthcare system and cause morbidity and fatality. Main content The diagnosis of this disease is daunting and challenging as it is dependent on emerging clinical symptomatology that continues to increase and change very rapidly. The definitive test is the very expensive and scarce polymerase chain reaction (PCR) viral identification technique. The management has remained largely supportive and empirical, as there are no officially approved therapeutic agents, vaccines or antiviral medications for the management of the disease. Severe cases often require intensive care facilities and personnel. Yet there is paucity of facilities including the personnel required for diagnosis and treatment of COVID-19 in sub-Saharan Africa (SSA). It is against this backdrop that a review of key published reports on the pandemic in SSA and globally is made, as understanding the natural history of a disease and the documented responses to diagnosis and management is usually a key public health strategy for designing and improving as appropriate, relevant interventions. Lead findings were that responses by most nations of SSA were adhoc, paucity of public health awareness strategies and absence of legislations that would help enforce preventive measures, as well as limited facilities (including personal protective equipment) and institutional capacities to deliver needed interventions. Conclusion COVID-19 is real and has overwhelmed global health care system especially low-income countries of the sub-Sahara such as Nigeria. Suggestions for improvement of healthcare policies and programs to contain the current pandemic and to respond more optimally in case of future pandemics are made herein.


2020 ◽  
Vol 5 (11) ◽  
pp. e003423
Author(s):  
Dongqing Wang ◽  
Molin Wang ◽  
Anne Marie Darling ◽  
Nandita Perumal ◽  
Enju Liu ◽  
...  

IntroductionGestational weight gain (GWG) has important implications for maternal and child health and is an ideal modifiable factor for preconceptional and antenatal care. However, the average levels of GWG across all low-income and middle-income countries of the world have not been characterised using nationally representative data.MethodsGWG estimates across time were computed using data from the Demographic and Health Surveys Program. A hierarchical model was developed to estimate the mean total GWG in the year 2015 for all countries to facilitate cross-country comparison. Year and country-level covariates were used as predictors, and variable selection was guided by the model fit. The final model included year (restricted cubic splines), geographical super-region (as defined by the Global Burden of Disease Study), mean adult female body mass index, gross domestic product per capita and total fertility rate. Uncertainty ranges (URs) were generated using non-parametric bootstrapping and a multiple imputation approach. Estimates were also computed for each super-region and region.ResultsLatin America and Caribbean (11.80 kg (95% UR: 6.18, 17.41)) and Central Europe, Eastern Europe and Central Asia (11.19 kg (95% UR: 6.16, 16.21)) were the super-regions with the highest GWG estimates in 2015. Sub-Saharan Africa (6.64 kg (95% UR: 3.39, 9.88)) and North Africa and Middle East (6.80 kg (95% UR: 3.17, 10.43)) were the super-regions with the lowest estimates in 2015. With the exception of Latin America and Caribbean, all super-regions were below the minimum GWG recommendation for normal-weight women, with Sub-Saharan Africa and North Africa and Middle East estimated to meet less than 60% of the minimum recommendation.ConclusionThe levels of GWG are inadequate in most low-income and middle-income countries and regions. Longitudinal monitoring systems and population-based interventions are crucial to combat inadequate GWG in low-income and middle-income countries.


2020 ◽  
Vol 12 (24) ◽  
pp. 4190
Author(s):  
Siyamthanda Gxokwe ◽  
Timothy Dube ◽  
Dominic Mazvimavi

Wetlands are ranked as very diverse ecosystems, covering about 4–6% of the global land surface. They occupy the transition zones between aquatic and terrestrial environments, and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle, sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate due to global environmental change and anthropogenic activities. This requires holistic monitoring, assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing data offer an opportunity to assess changes in the status of wetlands including their spatial coverage. So far, a number of studies have been conducted using remotely sensed data to assess and monitor wetland status in semi-arid and arid regions. A literature search shows a significant increase in the number of papers published during the 2000–2020 period, with most of these studies being in semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews progress made in the use of remote sensing in detecting and monitoring of the semi-arid and arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands using freely available multispectral sensors. The paper firstly describes important characteristics of wetlands in semi-arid and arid regions that require monitoring in order to improve their management. Secondly, the use of freely available multispectral imagery for compiling wetland inventories is reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly, algorithms for image classification as well as challenges associated with their uses and possible future research are summarised. However, there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with the both spatial and spectral resolutions of data used when mapping and monitoring wetlands. However, advancements in remote-sensing and data analytics provides new opportunities for further research on wetland monitoring and assessment across various scales.


Oryx ◽  
2021 ◽  
pp. 1-10
Author(s):  
Kyana N. Pike ◽  
Stephen Blake ◽  
Freddy Cabrera ◽  
Iain J. Gordon ◽  
Lin Schwarzkopf

Abstract As agricultural areas expand, interactions between wild animals and farmland are increasing. Understanding the nature of such interactions is vital to inform the management of human–wildlife coexistence. We investigated patterns of space use of two Critically Endangered Galapagos tortoise species, Chelonoidis porteri and Chelonoidis donfaustoi, on privately owned and agricultural land (hereafter farms) on Santa Cruz Island, where a human–wildlife conflict is emerging. We used GPS data from 45 tortoises tracked for up to 9 years, and data on farm characteristics, to identify factors that influence tortoise movement and habitat use in the agricultural zone. Sixty-nine per cent of tagged tortoises used the agricultural zone, where they remained for a mean of 150 days before returning to the national park. Large male tortoises were more likely to use farms for longer periods than female and smaller individuals. Tortoises were philopatric (mean overlap of farmland visits = 88.7 ± SE 2.9%), on average visiting four farms and occupying a mean seasonal range of 2.9 ± SE 0.3 ha. We discuss the characteristics of farm use by tortoises, and its implications for tortoise conservation and coexistence with people.


2020 ◽  
Vol 151 (2) ◽  
pp. 547-574 ◽  
Author(s):  
Lukas Salecker ◽  
Anar K. Ahmadov ◽  
Leyla Karimli

AbstractDespite significant progress in poverty measurement, few studies have undertaken an in-depth comparison of monetary and multidimensional measures in the context of low-income countries and fewer still in Sub-Saharan Africa. Yet the differences can be particularly consequential in these settings. We address this gap by applying a distinct analytical strategy to the case of Rwanda. Using data from two waves of the Rwandan Integrated Household Living Conditions Survey, we combine comparing poverty rates cross-sectionally and over time, examining the overlaps and differences in the two measures, investigating poverty rates within population sub-groups, and estimating several statistical models to assess the differences between the two measures in identifying poverty risk factors. We find that using a monetary measure alone does not capture high incidence of multidimensional poverty in both waves, that it is possible to be multidimensional poor without being monetary poor, and that using a monetary measure alone overlooks significant change in multidimensional poverty over time. The two measures also differ in which poverty risk factors they put emphasis on. Relying only on monetary measures in low-income sub-Saharan Africa can send inaccurate signals to policymakers regarding the optimal design of social policies as well as monitoring their effectiveness.


Sign in / Sign up

Export Citation Format

Share Document