scholarly journals An Update on the Impact of Climate Change in Viticulture and Potential Adaptations

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 514 ◽  
Author(s):  
van Leeuwen ◽  
Destrac-Irvine ◽  
Dubernet ◽  
Duchêne ◽  
Gowdy ◽  
...  

Climate change will impose increasingly warm and dry conditions on vineyards. Wine quality and yield are strongly influenced by climatic conditions and depend on complex interactions between temperatures, water availability, plant material, and viticultural techniques. In established winegrowing regions, growers have optimized yield and quality by choosing plant material and viticultural techniques according to local climatic conditions, but as the climate changes, these will need to be adjusted. Adaptations to higher temperatures include changing plant material (e.g., rootstocks, cultivars and clones) and modifying viticultural techniques (e.g., changing trunk height, leaf area to fruit weight ratio, timing of pruning) such that harvest dates are maintained in the optimal period at the end of September or early October in the Northern Hemisphere. Vineyards can be made more resilient to drought by planting drought resistant plant material, modifying training systems (e.g., goblet bush vines, or trellised vineyards at wider row spacing), or selecting soils with greater soil water holding capacity. While most vineyards in Europe are currently dry-farmed, irrigation may also be an option to grow sustainable yields under increasingly dry conditions but consideration must be given to associated impacts on water resources and the environment.

OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 147 ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Agnès Destrac-Irvine

<p style="text-align: justify;"><strong>Aim:</strong> Major effects of climate change are an increase in temperature, a modification in rainfall patterns and an increase in incoming radiations, in particular UV-Bs. Grapevines are highly sensitive to climatic conditions. Hence, plant development, grape ripening and grape composition at ripeness are modified by climate change. Some of these changes are already visible and will be amplified over the coming decades; other effects, although not yet measurable, can be predicted by modeling. The objective of this paper is to assess which modifications in wine quality and typicity can be expected and what levers growers can implement to adapt to this changing situation. </p><p style="text-align: justify;"><strong>Methods and results:</strong> This paper focusses on the effect of temperature, vine water status and UV-B radiation in viticulture. Vine phenology is driven by temperacture. A significant advance in phenology (i.e. budburst, flowering and veraison dates) has been observed since the early 1980’s in most winegrowing regions. The combined effect of advanced phenology and increased temperatures results in warmer conditions during grape ripening. In these conditions, grapes contain more sugar and less organic acids. Composition in secondary metabolites, and in particular aromas and aroma precursors, is dramatically changed. Increased drought, because of lower summer rain and/or because of higher reference evapotranspiration (ET<sub>0</sub>), induces earlier shoot growth cessation, reduced berry size, increased content in skin phenolic compounds, lower malic acid concentrations and modified aroma and aroma precursor profiles. Increased UV-B radiation enhances the accumulation of skin phenolics and modifies aroma and aroma precursor profiles. Over the next decades, an amplification of these trends is highly likely. Major adaptations can be reached though modifications in plant material (grapevine varieties, clones and root stocks), vineyard management techniques (grapevine architecture, canopy management, harvest dates, vineyard floor management, timing of harvest, irrigation) or site selection (altitude, aspect, soil water holding capacity).</p><p style="text-align: justify;"> <strong>Conclusion:</strong> Climate change will induce changes in grape composition which will modify wine quality and typicity. However, these modifications can be limited through adaptations in the vineyard.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong>  This study assesses the impact of major climatic parameters (temperature, water and radiation) on vine physiology and grape ripening. It addresses the issue of how the expected changes under climate change will impact viticulture. It is shown that appropriate levers do exist to allow growers to adapt to this new situation. Among these, modifications in plant material and viticultural techniques are the most promising tools.</p><div> </div>


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Agnès Destrac-Irvine

Aim: Major effects of climate change are an increase in temperature, a modification in rainfall patterns and an increase in incoming radiations, in particular UV-Bs. Grapevines are highly sensitive to climatic conditions. Hence, plant development, grape ripening and grape composition at ripeness are modified by climate change. Some of these changes are already visible and will be amplified over the coming decades; other effects, although not yet measurable, can be predicted by modeling. The objective of this paper is to assess which modifications in wine quality and typicity can be expected and what levers growers can implement to adapt to this changing situation. Methods and results: This paper focusses on the effect of temperature, vine water status and UV-B radiation in viticulture. Vine phenology is driven by temperacture. A significant advance in phenology (i.e. budburst, flowering and veraison dates) has been observed since the early 1980’s in most winegrowing regions. The combined effect of advanced phenology and increased temperatures results in warmer conditions during grape ripening. In these conditions, grapes contain more sugar and less organic acids. Composition in secondary metabolites, and in particular aromas and aroma precursors, is dramatically changed. Increased drought, because of lower summer rain and/or because of higher reference evapotranspiration (ET0), induces earlier shoot growth cessation, reduced berry size, increased content in skin phenolic compounds, lower malic acid concentrations and modified aroma and aroma precursor profiles. Increased UV-B radiation enhances the accumulation of skin phenolics and modifies aroma and aroma precursor profiles. Over the next decades, an amplification of these trends is highly likely. Major adaptations can be reached though modifications in plant material (grapevine varieties, clones and root stocks), vineyard management techniques (grapevine architecture, canopy management, harvest dates, vineyard floor management, timing of harvest, irrigation) or site selection (altitude, aspect, soil water holding capacity). Conclusion: Climate change will induce changes in grape composition which will modify wine quality and typicity. However, these modifications can be limited through adaptations in the vineyard.Significance and impact of the study:  This study assesses the impact of major climatic parameters (temperature, water and radiation) on vine physiology and grape ripening. It addresses the issue of how the expected changes under climate change will impact viticulture. It is shown that appropriate levers do exist to allow growers to adapt to this new situation. Among these, modifications in plant material and viticultural techniques are the most promising tools. 


2016 ◽  
Vol 11 (1) ◽  
pp. 150-167 ◽  
Author(s):  
Cornelis van Leeuwen ◽  
Philippe Darriet

AbstractClimate change is a major challenge in wine production. Temperatures are increasing worldwide, and most regions are exposed to water deficits more frequently. Higher temperatures trigger advanced phenology. This shifts the ripening phase to warmer periods in the summer, which will affect grape composition, in particular with respect to aroma compounds. Increased water stress reduces yields and modifies fruit composition. The frequency of extreme climatic events (hail, flooding) is likely to increase. Depending on the region and the amount of change, this may have positive or negative implications on wine quality. Adaptation strategies are needed to continue to produce high-quality wines and to preserve their typicity according to their origin in a changing climate. The choice of plant material is a valuable resource to implement these strategies. (JEL Classifications: Q13, Q54)


2016 ◽  
Vol 11 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Nathalie Ollat ◽  
Jean-Marc Touzard ◽  
Cornelis van Leeuwen

AbstractClimate change will have a profound effect on vine growing worldwide. Wine quality will also be affected, which will raise economic issues. Possible adaptations may result from changes in plant material, viticultural techniques, and the wine-making process. Relocation of vineyards to cooler areas and increased irrigation are other options, but they may result in potential conflicts for land and water use. Grapes are currently grown in many regions around the world, and growers have adapted their practices to the wide range of climatic conditions that can be found among or inside these areas. This knowledge is precious for identifying potential adaptations to climate change. Because climate change affects all activities linked to wine production (grape growing, wine making, wine economics, and environmental issues), multidisciplinary research is needed to guide growers to continue to produce high-quality wines in an economical and environmentally sustainable way. An example of such an interdisciplinary study is the French LACCAVE (long-term adaptation to climate change in viticulture and enology) project, in which researchers from 23 institutes work together on all issues related to the impact of climate change on wine production. (JEL Classifications: Q1, Q5)


2020 ◽  
Author(s):  
Amanda R. Bourne ◽  
Susan J. Cunningham ◽  
Claire N. Spottiswoode ◽  
Amanda R. Ridley

AbstractIncreasingly harsh and unpredictable climate regimes are affecting animal populations around the world as climate change advances. One relatively unexplored aspect of species vulnerability to climate change is whether and to what extent responses to environmental stressors might be mitigated by variation in group size in social species. We used a 15-year dataset for a cooperatively-breeding bird, the southern pied babbler Turdoides bicolor, to determine the impact of temperature, rainfall, and group size on body mass change and interannual survival in both juveniles and adults. Hot and dry conditions were associated with reduced juvenile growth, mass loss in adults, and compromised survival between years in both juveniles (−86%) and adults (−60%). Individuals across all group sizes experienced similar effects of climatic conditions. Larger group sizes may not buffer individual group members against the impacts of hot and dry conditions, which are expected to increase in frequency and severity in future.


2021 ◽  
Vol 18 (1) ◽  
pp. 52-65
Author(s):  
P. N. Mikheev

The article discusses issues related to the impact of climate change on the objects of the oil and gas industry. The main trends in climate change on a global and regional (on the territory of Russian Federation) scale are outlined. Possible approaches to the identification and assessment of climate risks are discussed. The role of climatic risks as physical factors at various stages of development and implementation of oil and gas projects is shown. Based on the example of oil and gas facilities in the Tomsk region, a qualitative assessment of the level of potential risk from a weather and climatic perspective is given. Approaches to creating a risk management and adaptation system to climate change are presented.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2017 ◽  
Vol 11 (2) ◽  
pp. 63-75
Author(s):  
Nedealcov Maria ◽  
Donica Ala ◽  
Brașoveanu Valeriu ◽  
Grigoraș Nicolae ◽  
Deomidova Cristina

Abstract Assessment activity and surveillance of the forests health, held at the global, regional and local level, has continuously developed, culminating in the current period with interdisciplinary and extensive scientific researches, that evaluate the effects of the main factors on forest ecosystems state, in particular, air pollution and climate change. Scientific researches have shown that among trees ecophysiological processes, forest life processes and meteorological parameters there are direct dependences, particularly in the case of trees supply with water during the growing period (May-July), with major influences for critical months (July and August), which have a decisive impact on growth, vitality and production of organic matter in forests. Dry years, from the beginning of the third millennium can lead to a decrease of mesophilic forests area (beech, sessile oak and penduculate oak), which will tend to retreat towards the center of the area (central Europe) in favor of thermophilic forests with pubescent oak. It was determined that a most significant negative impact of climate aridization will feel the forest ecosystems from Southern and central regions of country (conditioned by the mean air temperature (July-August), monthly rainfall (May-August), evapotranspiration and geographic latitude), and less - the Northern part of the country (Forestry Aridity Index calculated for 3 experimental stations revealed variations of this index between 7.8 - 8.3 - in the Central part of country, and 8.4 - 8.6 - for Southern part of country). At the same time the impact of climate change will determine the spatial and temporal dynamics of pests and pathogenic species. The phenomenon of climate aridization was expressed also through the impact of the Microsphaera alphitoides disease, intensity of “mildew” attack being based on the climatic conditions of the study region. Obtained data, for confirmation, were correlated with indications of bioindicators, present in the study region.


Author(s):  
Ayansola Olatunji Ayandibu ◽  
Makhosazana Faith Vezi-Magigaba

Entrepreneurs in emerging and developing economies face many challenges curtailing their ability to finance and grow their business ventures. Climate change provides new opportunities for entrepreneurs to gain access to finance and contribute toward more climate-resilient economies. The objective of this chapter is to outline the dimensions of entrepreneurial financing that are sensitive to levels of climate change with emphasis on the financial services sector's role in reacting to these changes. An analysis of current extant literature will be explored, and evidence supporting effective entrepreneurial financing will be used to develop a theoretical framework for climate change and entrepreneurial financing to foster a more climatic conditions-sustainable economy. The literature in this chapter indicated the need for establishing the impact of climate change on entrepreneurial financing in the financial services sector in order to provide recommendations that can direct funding more effectively towards climate-resilient activities and a more climatic conditions-sustainable economy.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ming Hao Wang ◽  
Jing Ru Wang ◽  
Xiao Wei Zhang ◽  
Ai Ping Zhang ◽  
Shan Sun ◽  
...  

Abstract Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species’ original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.


Sign in / Sign up

Export Citation Format

Share Document