scholarly journals Influence of Organic Amendment on Soil Respiration and Maize Productivity in a Semi-Arid Environment

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 611
Author(s):  
Lamptey ◽  
Xie ◽  
Li ◽  
Coulter ◽  
Jagadabhi

Soil degradation and C emissions are a threat to sustainable agriculture in many arid and semi-arid areas. For sustainable agriculture, the influence of soil amendments on crop production and soil respiration has been a key focus of research. A three-year field study to assess how soil amendments influence soil properties, soil respiration (Rs), and yield of maize (Zea mays L.) was conducted. Treatments were: no amendment (NA), chemical fertilizer (CF), swine (Sus scrofa L.) manure (SM), maize stover (MS), and swine manure + chemical fertilizer (SC). Soil amendment (CF, SM, MS, and SC) consistently produced greatest grain yield and aboveground biomass, which averaged 38 and 34% greater than NA, respectively. No amendment reduced Rs by an average of 12% compared to amendment treatments. Enhanced grain yield with soil amendment resulted in increased carbon emission efficiency (CEE) with SC>MS>CF>SM>NA. Across years, SC decreased soil bulk density by 13% and increased CEE, soil total C, and soil hydraulic conductivity by 52, 19, and 21%, respectively, compared to NA. These results demonstrate the viability of swine manure + chemical fertilizer at 200 kg N ha−1 as a soil amendment for improved CEE and advancing sustainable maize production in semi-arid rainfed environments.

2017 ◽  
Vol 101 (2) ◽  
pp. 185-202
Author(s):  
Johanie Rivera-Zayas ◽  
David Sotomayor-Ramírez ◽  
Ricardo Barnes

Nitrogen (N) is possibly the most limiting nutrient for crop production on the southern semi-arid coast of Puerto Rico. In efforts to improve inbred maize (Zea mays L.) grain yield, fertilizer N is sometimes aggressively managed. In this paper, we report on the results of a field experiment that evaluated the effect of six rates of fertilizer N (0, 34, 68,102,135 and 203 kg N/ha) and of cowpea (Vigna unguiculata cv. Iron-clay), planted as a cover crop during the offseason, on inbred maize grain yield. The soil was Jacaguas series (Loamy-skeletal, mixed, superactive, isohyperthermic Fluventic Haplustolls) on the Dow Agrosciences experimental farm in Santa Isabel, Puerto Rico. Cowpea was planted on 13 July 2013 and incorporated into the soil on 20 September 2013. An inbred maize line was planted on 19 December 2013 and harvested on 19 March 2014 at a plant density of 51,645 plants per hectare. Irrigation was provided via drip system, and fertilizer N was applied at three different stages during the growing season: at emergence, 21 and 37 days after planting. Measurements of plant height, chlorophyll readings using SPAD-502® and GreenSeeker®, and leaf N concentration were used as indicators of treatment response and N sufficiency. The maximum grain yield of 2,918 kg/ha was attained with the fertilizer N rate of 68 kg N/ha. The cowpea cover crop rotation did not affect grain yield (P>0.05). Plant height, and measurements by SPAD-502® and GreenSeeker® provided adequate indicators of crop N sufficiency during the vegetative stages V6 to V12, with optimum values of 149 cm, 46, and 0.67 NDVI, respectively, 52 days after planting with an application of 68 kg N/ ha. Crop response to fertilizer N occurred at a lower rate than in previous studies and those occurring under conventional commercial conditions. Other factors related to fertilizer N management, such as sources, placement and timing of application might be as important for grain yield improvement of inbred maize.


2018 ◽  
Vol 16 (3) ◽  
pp. 357-365
Author(s):  
Syeda Ariana Ferdous ◽  
Mohammad Noor Hossain Miah ◽  
Mozammel Hoque ◽  
Sazzad Hossain ◽  
Ahmed Khairul Hasan

The effect of lime and fertilizer application, as the management of soil acidity, on the growth and yield of rice cv. BRRI dhan50 was investigated during Aman rice season at the Agronomy Field Laboratory of Sylhet Agricultural University, Bangladesh. The experiment was consisted of two factors namely lime and fertilizer. There were four levels of lime (0, 0.50, 1.00, and 1.50 t ha–1 of CaCO3.MgCO3) and three levels of fertilizers (control, FYM @ 10 t ha–1, and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn). The experiment was laid out in a randomized complete block design with three replications where the unit plot size was 4.0 m x 2.5 m. Growth parameters, yield components and yield of BRRIdhan 50 rice increased with increasing lime rate in association of fertilizer in acidic soil. The highest grain yield (2.90 t ha–1) was recorded from the application of 1.50 t ha–1 lime and the lowest (2.06 t ha–1) was from control (0t ha–1), irrespective of fertilizer. On the other hand, the best effect of fertilizers on grain yield (3.08 t ha–1) was found with the application of FYM @ 10 t ha–1 and the lowest yield (1.59 t ha–1) was in control. The treatment combination of lime 1.50 t ha–1 and FYM (@ 10 t ha–1 produced the highest grain yield (3.60 t ha–1), which was followed by treatment combination of lime 1.50 t ha–1 and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn (3.28 t ha–1). Additionally, application of lime and FYM improved the soil fertility and properties of acidic soil for crop production by increasing the pH, organic matter and availability of some essential nutrients. From the study, it was indicated that both FYM and lime could affect to enhance the grain yield of rice in acidic soil. J. Bangladesh Agril. Univ. 16(3): 357–365, December 2018


2020 ◽  
Vol 71 (10) ◽  
pp. 894
Author(s):  
M. K. Conyers ◽  
J. E. Holland ◽  
B. Haskins ◽  
R. Whitworth ◽  
G. J. Poile ◽  
...  

Soil testing guidelines for sulfur (S) under dryland cropping in south-eastern Australia are not well developed. Our objective was to assess the value of soil and tissue tests for S and nitrogen (N), because the two minerals frequently interact), in predicting S-deficient sites and hence increasing the probability of response to application of S (and N). Here, we report three proximal experiments in 2014–16 for barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) on a sandy soil in a semi-arid environment near Merriwagga in western New South Wales. The trials contained a factorial combination of four rates of each of applied N as urea and S as high-grade gypsum. Responses to S were obtained for dry matter (DM) quantity and nutrient content at flowering in 2014, but no grain-yield response was obtained in any year. DM response to applied S was obtained when the concentration of S in the DM was increased from 0.08% in barley and 0.09% in wheat without S application to 0.10–0.11% in both crops with S applied as gypsum. Because we obtained no grain-yield responses to applied S, the 0.10% S in grain was likely to have been adequate for both crops in these experiments. A pool of subsoil S was accessed during each season and this compensated for any DM deficiencies of S by the time of grainfill. Shallow soil tests (0–10 cm) for S can therefore indicate sufficiency but not necessarily deficiency; therefore, in grain-cropping areas, we recommend soil S tests on the same samples as used for deep N testing (to 60 cm) and that an S-budgeting approach be used following the soil tests. Furthermore, for marginal nutritional circumstances such as occurred in this study, the supporting use of N:S ratio is recommended, with values >17 in DM or grain likely to indicate S deficiency for both barley and wheat.


1968 ◽  
Vol 8 (32) ◽  
pp. 340 ◽  
Author(s):  
JS Russell

The response of Gabo wheat to applied nitrogen at 52 sites in the wheat growing areas of South Australia during 1956-61 was examined in relation to soil and cultural factors, as separate groups and together with climatic factors, by a stepwise multiple regression analysis using a computer. The 10 dependent variables were the linear and quadratic coefficients obtained by fitting orthogonal polynomials to response curves of various parameters (grain yield, grain + straw yield, harvest index, grain nitrogen percentage, and grain nitrogen yield) to applied nitrogen at each of 52 sites. The independent variables were 14 soil properties, such as total nitrogen content and initial nitrate status, and 6 cultural characteristics, including date of sowing and period of cultivation. In addition, 23 climatic variables were also included in analysis considering all independent variables. Of the soil variables the most potent was initial nitrate content of the 0-6 inch horizon. Date of sowing was the most potent cultural variable. The proportion of variance explained in the final analysis by the variables examined was greatest for grain nitrogen yield (73.0 per cent) and grain + straw yield (72.1 per cent). The value for grain yield was 48.9 per cent. Differences between nitrogen and phosphorus response in a semi-arid environment and the theoretical and practical implications of these differences are discussed in relation to the predictive value of soil analyses.


2015 ◽  
Vol 21 (7) ◽  
pp. 2670-2686 ◽  
Author(s):  
Garry J. O'Leary ◽  
Brendan Christy ◽  
James Nuttall ◽  
Neil Huth ◽  
Davide Cammarano ◽  
...  

2021 ◽  
Vol 23 (09) ◽  
pp. 1263-1269
Author(s):  
Deepika R ◽  
◽  
Swaminathan C ◽  
Kannan P ◽  
Sathyamoorthy NK ◽  
...  

Nutri-millets offer copious micronutrients like vitamins, beta-carotene etc. In this present day, all the millets are amazingly superior and are therefore, the result for the malnutrition and obesity that affects a vast majority of the Indian population. They have numerous beneficial properties like drought resistant, good yielding in areas where water is limited and they possess good nutritive values. The prospective water scarcity in semi-arid regions disturbs both normal as well as managed environments, which limits the cultivation of crops, fodder, and other plants. The issues faced by the rain-dependent farming of these semi-arid regions are primarily the unpredictability of the monsoon. Probability analysis of rainfall events are believed to contribute in deciding sowing dates for the current season and for successful crop production in semi-arid environments. The present study was carried out in semi-arid condition to quantify the performance of nutri-millets in the rain dependent farming. The experiment was laid out under factorial randomized block design with 3 replications. The treatments comprises of crop factor viz., Sorghum [Sorghum bicolor (L.) Moench] (C1) and, little millet [Panicum sumatrense Roth ex Roem. & Schult] (C2) and sowing window factor viz., sowing based farmer’s practice (M1) i.e. on 31st standard meteorological week (SMW); Sowing at 33rd SMW based on 50% rainfall probability (M2); Sowing at 38th SMW based on 75% rainfall probability (M3), Sowing window as per the current weather forecast, for this season on 35th SMW (M4).It is evident from the study that Sowing sorghum at 38th standard meteorological week based on 75% rainfall probability recorded higher grain yield, rain water use efficiency with elevated iron and calcium content. This shows that different sowing dates have significant influence on grain yield and quality of nutri-millets.


2013 ◽  
Vol 448-453 ◽  
pp. 680-687
Author(s):  
Xue Jun Yang ◽  
Zhen Kun Lin ◽  
Jie Chen ◽  
Jun Hui Wu ◽  
Hui Ping Si ◽  
...  

With the growing amount of the chemical fertilizer consumption and agricultural wastes, non-point pollution of agriculture has been one of the problems threatening world crop production, especially considering the urgency of climate change. In this paper, a review of the research of biochar, pyroligneous acid and organic fertilizer mixture is given. And agronomic and environmental benefits that can potentially be derived from the application of this soil amendment in soils are discussed.


Soil Research ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 120 ◽  
Author(s):  
J. McL. Bennett ◽  
R. S. B. Greene ◽  
B. W. Murphy ◽  
P. Hocking ◽  
D. Tongway

This paper determines the influence of lime and gypsum on the rehabilitation of a degraded sodic soil in a semi-arid environment 12 years after application. The aim was to assess rehabilitation strategies for sodic soils as alternatives to the application of gypsum alone. An experimental site was used where lime and gypsum combinations (L0G0, lime 0 t ha–1 and gypsum 0 t ha–1; L0G1, L0G2.5, L0G5, L1G0, L2.5G0, L5G0, L1G1, L2.5G1) had been applied 12 years prior, in 1994. An earlier study had reported on the effects after 3 years of the chemical ameliorants and tillage on a range of soil physical and chemical properties at the site. The current study, sampled in 2006, assessed the effects after 12 years of lime and gypsum on soil chemistry, stability, hydraulics, vegetative growth and soil respiration. Calcium, primarily from lime, was observed to have a major effect on soil health. Significant effects on soil chemistry were limited to increases in exchangeable calcium and decreases in exchangeable magnesium, although aggregate stability in water and hydraulic conductivity were significantly improved where L5G0 was applied. Vegetation patch width, total nitrogen and carbon, and soil respiration were significantly improved where lime had been added at 2.5 or 5 t ha–1. As no lime could be detected in the soil 12 years after application, it was deduced that lime had acted as a catalyst for increased functionality in soil and vegetation interactions. This increased soil functionality resulted in an increased rate of lime dissolution in the soil.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1234-1242 ◽  
Author(s):  
Jun Zhen Mi ◽  
Jing Hui Liu ◽  
Sheng Tao Xu ◽  
Bao Ping Zhao ◽  
Man Hong Yang ◽  
...  

Effect of different amount sandy soil amendment on soil moisture and millet growth was studied in a rainfed field experiment in a semi-arid region in northern China in 2011-2013. Three-year results show: sandy soil amendment treatments all increased soil moisture, they are T3>T4>T5>T2>T1>CK, and with depth of soil layer increasing, differences of among treatments reduced; it can significantly (P<0.05) increased plant height of millet and dry matter accumulation above-ground by 1.77%-25.67% and 3.21%-104.79% respectively compared with CK; grain yield under sandy soil amendment is significantly (P<0.05) higher than CK, yield of 18000 kg·hm-2 and 24000 kg·hm-2 treatments is higher than others,being 5102.55 kg·hm-2 and 5035.85 kg·hm-2, biological yield, water and fertilizer use efficiency have the same effect as grain yield. Above all, using sandy soil amendment can improve the condition of soil moisture and fertilizer, sufficiently use limited rainfall, increase crop yield, increases water and fertilizer use efficiency, treatments with 18000 kg·hm-2,24000 kg·hm-2 sandy soil amendment show a better effect on resisting drought, retaining fertilizer and increasing yield under millet production in all the treatments.


Sign in / Sign up

Export Citation Format

Share Document