scholarly journals Running Head: Heat Affects Cholesterol and Bile Acid Alterations in Cholesterol and Bile Acids Metabolism in Large White Pigs during Short-Term Heat Exposure

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 359 ◽  
Author(s):  
Wei Fang ◽  
Xiaobin Wen ◽  
Qingshi Meng ◽  
Lei Liu ◽  
Jingjing Xie ◽  
...  

Heat stress influences lipid metabolism independently of nutrient intake. It is not well understood how cholesterol and bile acid (BA) metabolism are affected by heat stress. To investigate the alterations of cholesterol and bile acids when pigs are exposed to short term heat stress, 24 Large White pigs (63.2 ± 9.5 kg body weight, BW) were distributed into one of three environmental treatments: control conditions (CON, 23 °C with ad libitum intake; n = 8), heat stress conditions (HS, 33 °C with ad libitum intake; n = 8), or pair-fed conditions (PF, 23 °C with the same amount to the feed consumed by the HS; n = 8) for three days. Compared with CON pigs, HS pigs reduced the average daily feed intake and average daily gain by 55% and 124%, respectively, and significantly increased rectal temperatures by 0.9 °C and respiration rates more than three-fold. The serum total cholesterol (TC), low-density lipoprotein-cholesterol, and triglycerides (TG) increased (p < 0.05), while hepatic TC, TG, and mRNA of 3-hydroxy-3-methylglutaryl-CoA reductase were reduced on day 3. Furthermore, liver taurine-conjugated BAs (TCBAs), including taurolithocholic acid, taurochenodeoxycholic acid (TCDCA), tauroursodeoxycholic acid, taurohyodeoxycholic acid, and taurocholic acid were elevated in HS pigs compared to CON and PF pigs (p < 0.05), and the level of chenodeoxycholic acid was more significant in the PF group than in the CON and HS groups. The concentration of ursodeoxycholic acid in the serum was higher in HS pigs than CON and PF pigs (p < 0.05), and TCDCA was increased in HS pigs compared with PF pigs (p < 0.05). Altogether, short-term HS reduced hepatic cholesterol levels by decreasing cholesterol synthesis, promoting cholesterol to TCBAs conversion, and cholesterol release to serum in growing pigs. This independently reduced feed intake might serve as a mechanism to protect cells from damage during the early period.

2021 ◽  
Author(s):  
Maggy Palesa Mabena ◽  
Moses Ratsaka ◽  
Thobela Nkukwana ◽  
Ingrid Malebana ◽  
Douglas Nkosi

Abstract This experiment evaluated varying levels of Amarula (Sclerocarya birrea A. Rich) nut cake (ANC) on growth performance, nutrient digestibility and carcass characteristics in pigs. Thirty Large White × Landrace (LW × LR) pigs were stratified by weight (average live weight of 20 ± 5 kg) and randomly allocated to the five experimental diets that contained 0 (control), 50, 100, 150 and 200 g ANC/kg DM. Each pig served as a replicate unit, housed individually. Bodyweight, feed intake, average daily gain (ADG) and feed conversion ratio (FCR) were recorded weekly throughout the trial period. On completion of the growth trial, following a 3-day adaptation, a nutrient digestibility study was conducted over 5 days. Thereafter, pigs were fasted for twelve hours, weighed, slaughtered, and carcass samples were collected for analysis. Feed intake was not affected by dietary treatment, but ADGs were reduced at ANC levels > 15%, resulting in poor FCR. Protein digestibility was reduced at ANC levels > 15%, while ether extract and fibre levels increased. Warm and cold carcass weights were lower at ANC levels > 15, with improved meat redness and lightness. It was concluded that ANC could replace SBM in the diet of growing pigs at less than 15% inclusion level.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Emily M Andreini ◽  
Sheyenne M Augenstein ◽  
Carrie S Fales ◽  
Roberto D Sainz ◽  
James W Oltjen

Abstract Comparing heat production after ad libitum (ADLIB) and restricted (RESTRICT) feeding periods may offer insight into how residual feed intake (RFI) groups change their energy requirements based on previous feeding levels. In this study, the authors sought to explain the efficiency changes of high- and low-RFI steers after feed restriction. To determine RFI classification, 56 Angus-cross steers with initial body weight (BW) of 350 ± 28.7 kg were individually housed, offered ad libitum access to a total mixed ration, and daily intakes were recorded for 56 d. RFI was defined as the residual of the regression of dry matter intake on mid-test BW0.75 and average daily gain. High- and low-RFI groups were defined as &gt;0.5 SD above or below the mean of zero, respectively. Fourteen steers from each high and low groups (n = 28) were selected for the subsequent 56-d RESTRICT period. During the RESTRICT period, intake was restricted to 75% of previous ad libitum intake on a BW0.75 basis, and all other conditions remained constant. After the RESTRICT period, both RFI groups had decreased maintenance energy requirements. However, the low-RFI group decreased maintenance energy requirements by 32% on a BW0.75 basis, more (P &lt; 0.05) than the high-RFI group decreased maintenance requirements (18%). Thus, the low-RFI steers remained more efficient after a period of feed restriction. We conclude that feed restriction decreases maintenance energy requirement in both high- and low-RFI groups that are restricted to the same degree.


1978 ◽  
Vol 27 (3) ◽  
pp. 345-354 ◽  
Author(s):  
G. A. Lodge ◽  
D. Lister ◽  
J. D. Wood ◽  
M. S. Wolynetz

ABSTRACTIn an experiment which showed that the results of a genotype comparison are influenced by the design of the test, 16 castrated male and 16 female pigs of each of Large White (LW) and Gloucester Old Spot (GOS) breeds were allocated equally among four treat- ments: WW—rationed by weight and slaughtered by weight; A A—rationed by age and slaughtered by age; AW—rationed by age and slaughtered by weight; and WF—rationed by weight and slaughtered after a common total feed intake. The experiment was designed so that performance of LW would be similar on all treatments, and the degree to which the GOS differed from the LW on each of these treatments was then evaluated. All pigs started on the experiment at 12 weeks of age, at which time mean weight of the LW was 14% greater than the mean for the GOS. The only between- breed difference that was statistically significant (P<0·05) on all treatments was weight of lean. Average daily gain and efficiency of feed conversion were significantly different between breeds only on the WW treatment. Weight of fat was significantly different on WW and AW but not on AA or WF.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 118-118
Author(s):  
Edith J Mayorga ◽  
Erin A Horst ◽  
Brady M Goetz ◽  
Sonia Rodríguez-Jiménez ◽  
Megan A Abeyta ◽  
...  

Abstract Objectives were to determine the effects of mitoquinol (MitoQ) on performance, metabolism, and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n=32; 59±1 kg BW) where blocked by BW and randomly assigned to 1 of 4 therapeutic-environmental treatments: 1) thermoneutral (TN) control (n=8; TNCtl), 2) TN and MitoQ (n=8; TNMitoQ), 3) HS control (n=8; HSCtl), or 4) HS and MitoQ (n=8; HSMitoQ). The trial consisted of two experimental periods (P). During P1 (2d), pigs were fed ad libitum and housed in TN conditions (20.6±0.1°C). During P2 (24h), HSCtl and HSMitoQ pigs were exposed to continuous HS (35.2±0.03°C); while TNCtl and TNMitoQ remained in TN conditions. Mitoquinol was orally administered twice daily (0700 and 1800 h; 40 mg/d) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (1.46°C, 6.79°C, and 101 bpm, respectively; P&lt; 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (67%; P&lt; 0.01). Additionally, HS pigs lost BW compared to their TN counterparts (-4.7 vs. +1.6 kg, respectively; P&lt; 0.01); however, the reduction in BW was less severe in HSMitoQ compared to HSCtl pigs (-3.85 vs. -5.50 kg, respectively; P&lt; 0.01). Circulating glucose increased in HSMitoQ relative to HSCtl pigs (15%; P=0.04). Non-esterified fatty acid (NEFA) concentrations were increased in HS compared to TN pigs (P&lt; 0.01), although this difference was influenced by increased NEFA in HSCtl relative to HSMitoQ pigs (251 vs. 142 μEq/L; P&lt; 0.01). Insulin:feed intake tended to increase in HS relative to TN pigs (P=0.09). Overall, no differences in blood urea nitrogen or cell blood counts were observed across treatments (P &gt;0.10). In conclusion, acute HS exposure negatively altered animal performance and metabolism; however, administering MitoQ appeared to ameliorate the HS response.


2018 ◽  
Vol 315 (6) ◽  
pp. R1096-R1106 ◽  
Author(s):  
Lidan Zhao ◽  
Ryan P. McMillan ◽  
Guohao Xie ◽  
Samantha G. L. W. Giridhar ◽  
Lance H. Baumgard ◽  
...  

Heat-stressed pigs experience metabolic alterations, including altered insulin profiles, reduced lipid mobilization, and compromised intestinal integrity. This is bioenergetically distinct from thermal neutral pigs on a similar nutritional plane. To delineate differences in substrate preferences between direct and indirect (via reduced feed intake) heat stress effects, skeletal muscle fuel metabolism was assessed. Pigs (35.3 ± 0.8 kg) were randomly assigned to three treatments: thermal neutral fed ad libitum (TN; 21°C, n = 8), heat stress fed ad libitum (HS; 35°C, n = 8), and TN, pair-fed/HS intake (PF; n = 8) for 7 days. Body temperature (TB) and feed intake (FI) were recorded daily. Longissimus dorsi muscle was biopsied for metabolic assays on days −2, 3, and 7 relative to initiation of environmental treatments. Heat stress increased TBand decreased FI ( P < 0.05). Heat stress inhibited incomplete fatty acid oxidation and glucose oxidation ( P < 0.05). Metabolic flexibility decreased in HS pigs compared with TN and PF controls ( P < 0.05). Both phosphofructokinase and pyruvate dehydrogenase (PDH) activities increased in PF ( P < 0.05); however, TN and HS did not differ. Heat stress inhibited citrate synthase and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activities ( P < 0.05). Heat stress did not alter PDH phosphorylation or carnitine palmitoyltransferase 1 abundance but reduced acetyl-CoA carboxylase 1 (ACC1) protein abundance ( P < 0.05). In conclusion, HS decreased skeletal muscle fatty acid oxidation and metabolic flexibility, likely involving β-HAD and ACC regulation.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 705 ◽  
Author(s):  
Chia ◽  
Tanga ◽  
Osuga ◽  
Alaru ◽  
Mwangi ◽  
...  

Pig production is one of the fastest growing livestock sectors. Development of this sector is hampered by rapidly increasing costs of fishmeal (FM), which is a common protein source in animal feeds. Here, we explored the potential of substituting FM with black soldier fly larval meal (BSFLM) on growth and blood parameters of pigs as well as economic aspects. At weaning, 40 hybrid pigs, i.e., crossbreeds of purebred Large White and Landrace were randomly assigned to five iso-nitrogenous and iso-energetic dietary treatments: Control (0% BSFLM and 100% FM (T0)), and FM replaced at 25% (T25), 50% (T50), 75% (T75) and 100% (T100) with BSFLM. Average daily feed intake (ADFI), average daily gain (ADG), body weight gain (BWG) and feed conversion ratio (FCR) were calculated for the whole trial. Hematological and serum biochemical parameters, the cost–benefit ratio (CBR) and return on investment (RoI) were evaluated. No significant effect of diet type was observed on feed intake and daily weight gain. Red or white blood cell indices did not differ among diets. Pigs fed T25, T75 and T100, had lower platelet counts compared to T0 and T50. Dietary inclusion of BSFLM did not affect blood total cholesterol, triglycerides, low-density lipoprotein and high-density lipoprotein. CBR and RoI were similar for the various diets. In conclusion, BSFLM is a suitable and cost-effective alternative to fishmeal in feed for growing pigs.


2000 ◽  
Vol 71 (1) ◽  
pp. 119-130 ◽  
Author(s):  
J. van Milgen ◽  
N. Quiniou ◽  
J. Noblet

AbstractWhen modelling the effect of a changing nutrient supply to growing animals, it is important to distinguish the individual response curve of an animal from the change in this response that may occur during growth. A data analysis model is proposed where, for an individual animal, the relation between protein deposition (PD) and metabolizable energy (ME) intake above maintenance (MEp) is curvilinear, so that PD intersects the origin and reaches its maximum at the maximum protein deposition rate (PDmax). An increase of MEp beyond that required to attain PDmax would not change PD. The MEp not used for protein synthesis can be used for lipid deposition (LD). The relation between PD and LD on the one hand and ME on the other hand can then be described as a function of the maintenance energy requirement (MEm), PDmax, the level of ME required to attain PDmax (F; as a multiple of MEm) and the energetic efficiencies of PD (kp) and LD (kf). Of these statistics, only kp and kf were assumed to be independent of body weight (BW), age or genotype. Variation in PDmax was described as a Gompertz function (of age) whereas variation in F was assumed a linear function of BW. Maintenance energy requirement was expressed as a power function of BW. To evaluate the model, 145 nitrogen and energy (indirect calorimetry) balances were obtained from three types of pigs (Large White castrated males (cLW) and Piétrain × Large White castrated males (cPP× ) and males (bPP×)) ranging in BW between 45 and 100 kg and housed under thermoneutral conditions. Animals were allotted to one of four energy levels ranging from 0·70 to 1·00 of ad libitum intake. The MEm was not different between genotypes (849 kJ/kg BW0·60) whereas the kp and kf were 0·56 and 0·75, respectively. For castrated animals on ad libitum intake, PDmax started limiting PD at approximately 130 days of age (78 and 86 kg BW for cLW and cPP×, respectively). Before this age and for bPP×, PD was limited by MEp. In bPP×, the difference between PD and PDmax was small (less than proportionately 0·05). The F did not change with BW for bPP× (2·85 × MEm) whereas for the other genotypes, it decreased linearly from 4·47 at 45 kg to 2·00 at 100 kg of BW. Due to its nature, the model allows estimation of PDmax even when energy is restricting PD.


2014 ◽  
Vol 54 (3) ◽  
pp. 319 ◽  
Author(s):  
Ronald E. Newman ◽  
Jeffery A. Downing ◽  
Peter C. Thomson ◽  
Cherie L. Collins ◽  
David J. Henman ◽  
...  

Three studies investigated the effect of feeding strategy on production performance and endocrine status of growing pigs. For Experiment 1, 20 entire male pigs (70.0 ± 4.6 kg) were allocated randomly to individual pens in one of four climate-controlled rooms. Pigs were fed for 23 days either ad libitum or entrained to feed bi-phasically for two 90-min periods. For Experiment 2, 20 entire male pigs (41.2 ± 3.5 kg) were housed as per Experiment 1. Pigs were fed for 49 days either ad libitum or fed bi-phasically for two 60-min periods. For Experiment 3, 100 female pigs (66.1 ± 3.5 kg) were randomly allocated to individual pens within a commercial piggery and fed for 42 days either ad libitum or bi-phasically for two 60-min periods. Ear vein catheters were inserted into 10 pigs from each group and hourly blood samples were collected for 24 h in Experiments 1 and 2 and for 11 h in Experiment 3. Plasma insulin, non-esterified fatty acid and glucose concentrations were determined in Experiments 1 and 2, and glucose and insulin concentrations in Experiment 3. Feed intake and performance were recorded in all experiments and carcass composition was assessed by computed tomography for Experiment 2. There were no differences in final liveweight between the two treatment groups for all experiments. Pigs fed for two 90-min periods (Experiment 1) showed no difference in feed intake when compared with feeding ad libitum. Pigs in Experiment 2 fed for two 60-min intervals consumed 2.49 kg/pig.day compared with those fed ad libitum that consumed 2.68 kg/day (P = 0.057). In Experiment 3, pigs fed twice daily consumed 2.82 kg/pig.day compared with 2.91 kg/pig.day in ad libitum-fed pigs (P = 0.051). Bi-phasic fed pigs in Experiment 2 had improved (P < 0.05) feed conversion efficiency compared with pigs fed ad libitum. For all experiments, there was no difference in plasma glucose concentrations between the two treatments. In all three experiments, the circulating insulin concentrations for pigs fed ad libitum remained at a constant level throughout the sampling period. However, plasma insulin concentrations for the bi-phasic fed pigs significantly increased ~1 h after both feeding periods during all three experiments. Insulin secretion of pigs fed for two 90-min periods differed from that of pigs fed for two 60-min periods. Plasma insulin concentration increased five-fold following feeding for 60 min, compared with that in pigs fed for 90 min, which increased two-fold. Bi-phasic-fed pigs from Experiment 2 had reduced (P < 0.05) total carcass fat and significantly increased muscle when compared with pigs fed ad libitum. The data showed that feeding pigs at two succinct periods aligned insulin secretion to the time of feeding. Pigs fed for 60 min, unlike those fed for 90-min intervals, had reduced feed intake in comparison to those fed ad libitum. This may suggest that the duration of the feeding bout is important for this response and this may in turn influence both energy balance and the way energy is partitioned.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 94-95
Author(s):  
Kelsie Webb ◽  
Ronald J Trotta ◽  
Phillip Bridges ◽  
James Matthews

Abstract To test the hypothesis that average daily gain (ADG) and clinical parameters of steers grazing novel non-toxic (NTE) or toxic KY-31 (TE) endophyte-infected tall fescue would be improved by ad libitum intake of vitamin-mineral mixes (V-M) that contain 27 ppm Se as a 1:1 blend of SELPLEX:sodium selenite (MIX) vs sodium selenite (ISe), 32 TE-naïve beef steers depleted of Se were randomly assigned to ad libitum consumption ISe vs MIX for 35 d and fed enough of a NTE/alfalfa/grain diet to achieve 0.57 kg BW gain/d. Within Se-form treatments, 2 steers were randomly assigned to each of 4, 2-acre NTE (ISe = 316 ± 31 kg, MIX = 315 ± 22 kg) or TE (ISe = 316 ± 37 kg, MIX = 314 ± 39 kg) paddocks for 84 d and had ad libitum access to their respective V-M. The MIXED procedure of SAS was used to assess effects of day, Se-form (ISe, MIX) and endophyte (NTE, TE) treatments, and their interactions. Whole blood Se decreased (P &lt; 0.01) 31% from d 0 to 84 and was 6.2% greater (P &lt; 0.01) for MIX steers. Serum prolactin decreased (P &lt; 0.01) 18% for NTE and 48% for TE steers from d 0 to 84 and was 17% greater (P = 0.01) for MIX vs. ISe TE steers. Alkaline phosphatase activity (AP) decreased (P &lt; 0.02) 27% from d 0 to 84 and was 15% greater (P &lt; 0.02) for MIX steers. Serum urea nitrogen increased (P &lt; 0.02) 8.2% from d 0 to 84 for TE but not NTE steers. Average daily gain (kg/d) was less (P &lt; 0.01) in TE (-0.18) vs NTE (0.09) steers. We conclude that the ad libitum intake of MIX ameliorated the negative effects of consuming TE on serum prolactin and AP but not ADG.


Sign in / Sign up

Export Citation Format

Share Document