scholarly journals Acute Heat Stress Induces the Differential Expression of Heat Shock Proteins in Different Sections of the Small Intestine of Chickens Based on Exposure Duration

Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1234 ◽  
Author(s):  
Sharif Hasan Siddiqui ◽  
Darae Kang ◽  
Jinryong Park ◽  
Hyun Woo Choi ◽  
Kwanseob Shim

In this study, we examined the protein and gene expression of heat shock proteins (HSPs) in different sections of the small intestine of chickens. In total, 300 one-day-old Ross 308 broiler chicks were randomly allocated to the control and treatment groups. The treatment group was divided into four subgroups, according to the duration of acute heat exposure (3, 6, 12, and 24 h). The influence of heat stress on the protein and gene expression of HSP70, HSP60, and HSP47 in different sections of the small intestine of chickens was determined. The protein expression of HSP70 and HSP60 was significantly higher at 6 h in the duodenum and jejunum and 12 h in the ileum. The HSP47 protein expression was significantly higher at 3 h in the duodenum and ileum and at 6 h in the jejunum. The gene expression levels of HSP70, HSP60, and HSP47 were significantly higher at the 3 h treatment group than the control group in the duodenum, jejunum, and ileum. The glutamate pyruvate transaminase and glutamate oxaloacetate transaminase levels were significantly higher at 12 and 24 h in the serum of the blood. Acute heat stress affected the expression of intestinal proteins and genes in chickens, until the induction of heat tolerance.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sharif Hasan Siddiqui ◽  
Darae Kang ◽  
Jinryong Park ◽  
Mousumee Khan ◽  
Kwanseob Shim

Abstract Chronic heat stress is considered to decrease the immune functions which makes negative effect on broiler growth performance. Here, we investigated the relationship between chronic heat stress, growth performance, and immunity in the small intestine of broilers. The study included two groups (control and heat stressed group) with eight replications per group. Ten broilers of 20-day aged were allocated in each replication. On day 35, the treatment group was subdivided into two groups based on their body weights (heavy and low body weight). Although, there was only the control and treatment group on day 28. The growth performance decreased and expression of heat shock protein 70 (HSP70), HSP60, and HSP47 increased on days 28 and 35 in the chronic heat stress group as compared with those in the control group. The expression levels of HSPs were significantly higher in the low body weight group than in the control group. The genes HSP70 and HSP60 were significantly associated with pro- and anti-inflammatory cytokines in the small intestine of the broilers of the treatment group. Thus, HSP70 and HSP60 activated the adaptive immunity in the small intestines of the broilers from the treatment group to allow adaptation to chronic heat stress environment.


2019 ◽  
Vol 34 (3) ◽  
pp. 173-182
Author(s):  
Youl-Chang Baek ◽  
Minseok Kim ◽  
Jin-Young Jeong ◽  
Young-Kyoon Oh ◽  
Sung-Dae Lee ◽  
...  

2021 ◽  
pp. 103040
Author(s):  
Máté Mackei ◽  
Gábor Mátis ◽  
Andor Molnár ◽  
Csilla Sebők ◽  
Júlia Vörösházi ◽  
...  

2016 ◽  
Vol 66 (3-4) ◽  
pp. 321-333 ◽  
Author(s):  
Yunyun Cheng ◽  
Songcai Liu ◽  
Ying Zhang ◽  
Dan Su ◽  
Gang Wang ◽  
...  

Heat stress dramatically decreases bull sperm quality and has recently received more attention due to the warmer global climate and more intensive production. However, no data exist regarding sperm quality or the related molecular mechanisms under heat stress. Recent studies showed that inducible heat shock proteins (HSPs) play an important role in the dairy heat stress regulation. In this article, to investigate the impacts of heat stress on sperm quality and the associated molecular mechanisms, sperm quality and enzyme activities concerning acrosome reaction were assessed in Simmental, Limousin and Yanbian bulls under heat stress. Subsequently, changes in heat shock protein expression profiles of Simmental bulls were observed, because we observed that sperm quality of these bulls was most sensitive to heat stress. Finally, the relationship between sperm quality and heat shock protein expression under heat stress was analyzed. The results show that summer heat stress decreased the sperm quality of the three bull breeds significantly. Moreover, different levels of heat stimulation induced various enzyme activity changes, among which the activity change in acrosomal enzyme was the most remarkable. Furthermore, the expression of heat shock proteins in the sperm was influenced by the imposed heat stress, among which the expression levels of HSP60 and HSP70 were increased while HSP90 decreased. In summary, our data show that heat stress seriously affects sperm quality and that HSP90 was most sensitive, although it should be noted that seasonal effects may confound these results. This change in heat shock protein expression may be the major factor that affected the sperm quality of the bulls. The findings may provide a new hypothesis for how heat stress impacts reproduction mechanistically.


Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


2001 ◽  
Vol 281 (3) ◽  
pp. H1346-H1352 ◽  
Author(s):  
Karyn L. Hamilton ◽  
Scott K. Powers ◽  
Takao Sugiura ◽  
Sunjoo Kim ◽  
Shannon Lennon ◽  
...  

We examined the effects of 3 days of exercise in a cold environment on the expression of left ventricular (LV) heat shock proteins (HSPs) and contractile performance during in vivo ischemia-reperfusion (I/R). Sprague-Dawley rats were divided into the following three groups ( n = 12/group): 1) control, 2) exercise (60 min/day) at 4°C (E-Cold), and 3) exercise (60 min/day) at 25°C (E-Warm). Left anterior descending coronary occlusion was maintained for 20 min, followed by 30 min of reperfusion. Compared with the control group, both the E-Cold and E-Warm groups maintained higher ( P < 0.05) LV developed pressure, first derivative of pressure development over time (+dP/d t), and pressure relaxation over time (−dP/d t) throughout I/R. Relative levels of HSP90, HSP72, and HSP40 were higher ( P < 0.05) in E-Warm animals compared with both control and E-Cold. HSP10, HSP60, and HSP73 did not differ between groups. Exercise increased manganese superoxide dismutase (MnSOD) activity in both E-Warm and E-Cold hearts ( P < 0.05). Protection against I/R-induced lipid peroxidation in the LV paralleled the increase in MnSOD activity whereas lower levels of lipid peroxidation were observed in both E-Warm and E-Cold groups compared with control. We conclude that exercise-induced myocardial protection against a moderate duration I/R insult is not dependent on increases in myocardial HSPs. We postulate that exercise-associated cardioprotection may depend, in part, on increases in myocardial antioxidant defenses.


Sign in / Sign up

Export Citation Format

Share Document