scholarly journals LC-MS/MS Based Metabolomics Reveal Candidate Biomarkers and Metabolic Changes in Different Buffalo Species

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 560
Author(s):  
Wen Shi ◽  
Xiang Yuan ◽  
Kuiqing Cui ◽  
Hui Li ◽  
Penghui Fu ◽  
...  

Consumers have shown more and more interest in high-quality and healthy dairy products and buffalo milk is commercially more viable than other milks in producing superior dairy products due to its higher contents of fat, crude protein, and total solids. Metabolomics is one of the most powerful strategies in molecular mechanism research however, little study has been focused on the milk metabolites in different buffalo species. Therefore, the aim of this study was to explore the underlying molecular mechanism of the fatty synthesis and candidate biomarkers by analyzing the metabolomic profiles. Milk of three groups of buffaloes, including 10 Mediterranean, 12 Murrah, and 10 crossbred buffaloes (Murrah × local swamp buffalo), were collected and UPLC-Q-Orbitrap HRMS was used to obtain the metabolomic profiles. Results showed that milk fatty acid in Mediterranean buffalo was significantly higher than Murrah buffalo and crossbred buffalo. A total of 1837/726 metabolites was identified in both positive and negative electrospray ionization (ESI±) mode, including 19 significantly different metabolites between Mediterranean and Murrah buffalo, and 18 different metabolites between Mediterranean and crossbred buffalo. We found 11 of the different metabolites were both significantly different between Mediterranean vs. Murrah group and Mediterranean vs crossbred group, indicating that they can be used as candidate biomarkers of Mediterranean buffalo milk. Further analysis found that the different metabolites were mainly enriched in fat synthesis related pathways such as fatty acid biosynthesis, unsaturated fatty acid biosynthesis, and linoleic acid metabolism, indicating that the priority of different pathways affected the milk fat content in different buffalo species. These specific metabolites may be used as biomarkers in the identification of milk quality and molecular breeding of high milk fat buffalo.

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhipeng Li ◽  
Suyu Lu ◽  
Kuiqing Cui ◽  
Laiba Shafique ◽  
Saif ur Rehman ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 2708
Author(s):  
Tianbao Zhang ◽  
Zhen Li ◽  
Xiaxia Song ◽  
Lida Han ◽  
Limin Wang ◽  
...  

Seed development plays an important role during the life cycle of plants. Linseed flax is an oil crop and the seed is a key organ for fatty acids synthesis and storage. So it is important to understand the molecular mechanism of fatty acid biosynthesis during seed development. In this study, four small RNA libraries from early seeds at 5, 10, 20 and 30 days after flowering (DAF) were constructed and used for high-throughput sequencing to identify microRNAs (miRNAs). A total of 235 miRNAs including 114 known conserved miRNAs and 121 novel miRNAs were identified. The expression patterns of these miRNAs in the four libraries were investigated by bioinformatics and quantitative real-time polymerase chain reaction (qPCR) analysis. It was found that several miRNAs, including Lus-miRNA156a was significantly correlated with seed development process. In order to confirm the actual biological function of Lus-miRNA156a, over-expression vector was constructed and transformed to Arabidopsis. The phenotypes of homozygous transgenic lines showed decreasing of oil content and most of the fatty acid content in seeds as well as late flowering time. The results provided a clue that miRNA156a participating the fatty acid biosynthesis pathway and the detailed molecular mechanism of how it regulates the pathway needs to be further investigated.


1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Author(s):  
L. K. Dahiwade ◽  
S. R. Rochlani ◽  
P. B. Choudhari ◽  
R. P. Dhavale ◽  
H. N. Moreira

Background: Mycobacterium tuberculosis is a causative organism of tuberculosis, which is most deadly disease after cancer in a current decade. The development of multidrug and broadly drug- resistant strains making the tuberculosis problem more and more critical. In last 40 years, only one molecule is added to the treatment regimen. Generally, drug design and development programs are targeted proteins whose function is known to be essential to the bacterial cell. Objectives: Reported here are the development of 'S', 'N’ heterocycles as antimycobacterials targeting fatty acid biosynthesis. Material and Methods: In the present communication, rational development of anti-mycobacterial agent's targeting fatty acid biosynthesis has been done by integrating the pocket modelling and virtual analysis. Results: The identified potential 33 lead compounds were synthesized, characterized by physicochemical and spectroscopic methods like IR, NMR spectroscopy and further screened for antimycobacterial activity using isoniazid as standard. All the designed compounds have shown profound antimycobacterial activity. Conclusion: In this present communication, we found that 3c, 3f, 3l and 4k molecules had expressive desirable biological activity and specific interactions with fatty acids. Further optimization of these leads is necessary for the development of potential antimycobacterial drug candidate having less side effects.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


Sign in / Sign up

Export Citation Format

Share Document