scholarly journals Interspecific ICSI for the Assessment of Sperm DNA Damage: Technology Report

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1250
Author(s):  
Jana Rychtarova ◽  
Alena Langerova ◽  
Helena Fulka ◽  
Pasqualino Loi ◽  
Michal Benc ◽  
...  

Xenogenic mammalian sperm heads injected into mouse ovulated oocytes decondense and form pronuclei in which sperm DNA parameters can be evaluated. We suggest that this approach can be used for the assessment of sperm DNA damage level and the evaluation of how certain sperm treatments (freezing, lyophilization, etc.) influence the quality of spermatozoa.

2018 ◽  
Vol 58 (2) ◽  
pp. 252 ◽  
Author(s):  
L. Fraser ◽  
Ł. Zasiadczyk ◽  
C. S. Pareek

Assessment of sperm-DNA integrity is a crucial issue in male fertility. In the present study, parameters derived from the image analysis of comets after single-cell gel electrophoresis were used to analyse the types of DNA damage of frozen–thawed boar spermatozoa. Semen, frozen in a cryoprotectant-free extender or in cryoprotectant-based extenders, was analysed for DNA fragmentation and with the following comet tail measures: percentage DNA in comet tail, comet tail length and olive tail moment. The percentages of sperm DNA damage in the comet tails were classified as Type 0 (no DNA damage), Type I (very low DNA damage), Type II (light DNA damage), Type III (medium DNA damage) and Type IV (heavy DNA damage). Sperm motility characteristics and membrane integrity were assessed in the pre-freeze and frozen–thawed semen samples. Assessment of sperm DNA fragmentation and comet tail measures showed marked inter-boar variability following cryopreservation. However, consistent differences among the boars, with respect to cryo-induced sperm DNA damage, were detected by the comet tail length and olive tail moment. Besides Type IV, all types of DNA damage were detected in the cryoprotectant-based extenders. It was found that the frequency of Type II and Type III of DNA damage of frozen–thawed spermatozoa was significantly greater in the cryoprotectant-based and cryoprotectant-free extenders respectively. Deterioration in the quality of the sperm DNA integrity was concomitant with a marked decline in sperm motility characteristics, reduced plasma membrane integrity and higher lipid peroxidation and aspartate aminotransferase activity after cryopreservation. It can be suggested that the comet-assay parameters, coupled with routine laboratory tests, are useful to improve the sperm evaluations of post-thaw quality of semen from individual boars and would offer more comprehensive information for a better understanding of the degree of cryo-induced sperm-DNA damage.


2017 ◽  
Vol 17 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Mohamed Aboul Ezz ◽  
Abd Elmonem Montasser ◽  
Mamdouh Hussein ◽  
Ashraf Eldesouky ◽  
Magdy Badr ◽  
...  

2014 ◽  
Vol 5 ◽  
Author(s):  
Elva I. Cortés-Gutiérrez ◽  
Carmen López-Fernández ◽  
José Luis Fernández ◽  
Martha I. Dávila-Rodríguez ◽  
Stephen D. Johnston ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 119
Author(s):  
Langgeng Priyanto ◽  
Agung Budiyanto ◽  
Asmarani Kusumawati ◽  
Kurniasih Kurniasih

The relationship among of sperm DNA damage in cows with pregnancy rates has not been widely studied. The purpose of this study to determine the relationship of sperm DNA damage with pregnancy rate on Brahman cows. The sperm DNA damage rate was measured by Sperm-BosHalomax® from 2 samples of male Brahman bull straw (40002 and 40885) and pregnancy rate was measured from the success rate of artificial insemination. In 14 female Brahman cows divided into two groups. One group of 7 in the artificial insemination with 40002 males with 37.11% sperm DNA damage and one in artificial insemination with 40885 with 10.65% sperm DNA damage. The data obtained were analyzed descriptively by comparing sperm DNA damage with pregnancy rate. The results showed that at 37.11% sperm DNA damage level was found pregnancy rate 57.11% with ultrasound on 30 day and pregnancy rate 42.80% with ultrasound to 45 day. Result of research on sperm DNA damage level of 10.66% found pregnancy rate 57.11% with ultrasound to 30 day and level pregnancy 57.11% with ultrasound 45 days. The results of this study have concluded that there is a difference in the rate of sperm DNA damage with pregnancy rate in Brahman cows. The sperm DNA damage has an effect on pregnancy rate on Brahman cows.  


Andrologia ◽  
2021 ◽  
Author(s):  
Renata Finelli ◽  
Francesco Pallotti ◽  
Francesco Cargnelutti ◽  
Fabiana Faja ◽  
Tania Carlini ◽  
...  

2020 ◽  
Vol 35 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F Horta ◽  
S Catt ◽  
P Ramachandran ◽  
B Vollenhoven ◽  
P Temple-Smith

Abstract STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5–8 weeks old, n = 15; old: 42–45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11–30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6–8 h post-fertilisation) and two-cell embryos (22–24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher’s exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.


Sign in / Sign up

Export Citation Format

Share Document