scholarly journals Dietary Fiber and Lysolecithin Supplementation in Growing Ducks: Effect on Performance, Immune Response, Intestinal Morphology and Lipid Metabolism-Regulating Genes

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2873
Author(s):  
Mohamed I. El-Katcha ◽  
Mosaad A. Soltan ◽  
Ramadan Shewita ◽  
Safaa E. Abdo ◽  
Amr S. Sanad ◽  
...  

The impact of different dietary fiber (DF) levels (with or without lysolecithin supplementation) on growth performance, immune response, expression of some lipid regulating genes and intestinal morphology was assessed in 408 Pekin ducks for 2 months. Soybean hulls were added to the diet to provide four different levels of DF: 2.4 (control diet), 3.8, 5.3, and 6.7% for the first four groups, respectively, while groups 5 to 8 fed the same four levels of DF with lysolecithin addition. Increasing dietary DF non-significantly reduced (p > 0.05) the ducks’ body weight (BW). However, ducks fed on 3.8% DF showed higher BW and improved feed conversion ratio. Lysolecithin supplementation with different DF did not support growth performance. Increasing DF with or without lysolecithin had no effect on serum lipid profile (p > 0.05). However, serum high-density lipoproteins (HDL) concentration was significantly increased with increasing fiber level in diet (p ˂ 0.05). Increasing DF with or without lysolecithin addition increased serum antioxidant activities and improved the immune response in terms of phagocytic and lysozyme activities. The DF level reduced the duodenal villi length and mucosal layer thickness while increased the villi width (p ˂ 0.05). Lysolecithin supplementation to diets ameliorated adverse effects on intestinal morphology. Moreover, DF level in ducks’ diet with or without lysolecithin significantly upregulated the expression of fatty acid synthase and lipoprotein lipase (p ˂ 0.05). Thus, it could be concluded that ducks fed on soybean hulls containing a diet at the level of 4.5% and providing 3.8% fiber level with or without lysolecithin showed the best performance.

2019 ◽  
Vol 50 (7) ◽  
pp. 1851-1861 ◽  
Author(s):  
Bamidele O. Omitoyin ◽  
Emmanuel K. Ajani ◽  
Olugbenga Orisasona ◽  
Happiness E. Bassey ◽  
Kazeem O. Kareem ◽  
...  

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 220-222
Author(s):  
Seung Min Oh ◽  
SeYoung Yoon ◽  
KwangYeol Kim ◽  
Jung Woo Choi ◽  
Abdolreza Hosseindoust ◽  
...  

Abstract The aim of this trial was to determine the optimal supplementation mealworm on growth performance, apparent total tract retention of nutrients, hematological traits, immune response, and intestinal morphology in weaned pigs. A total of 180 weaned pigs (Landrace×Yorkshire×Duroc; 6.27 ± 0.15 kg) were randomly allotted to 3 treatments and 6 replicates on the basis of initial body weight and sex. The dietary treatments included a corn-based diet supplemented with 0, 2.5, or 5 % mealworm in 2 phases (0–14 and 15–28 d). The gain to feed ratio (G:F) was higher in pigs fed 2.5% mealworm compared with 2.5% during the first phase. Overall ADG was improved in pigs fed 2.5% mealworm compared with pigs fed 5% mealworm. No improvement in overall ADFI and G:F were observed. No digestibility responses were observed by adding mealworm to the diet, but the digestibility of DM and GE were tended to be higher in pigs fed 2.5% mealworm compared with control in phase 1. The number of monocytes tended to be increased in pigs fed 5% mealworm. The concentration of plasma IgG was higher in pigs fed mealworm, however, the plasma IL-6 was tended to be decreased when mealworm was added to the diet (P = 0.052). There was no change in intestinal morphology with increasing dietary levels of mealworm. The results showed that the dietary supplementation of 2.5% mealworm had beneficial effects on growth performance and immune system, however, no effects were detected on growth performance when 5% mealworm was added to the diet.


2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Luca Lo Verso ◽  
Guylaine Talbot ◽  
Bruno Morissette ◽  
Frédéric Guay ◽  
J Jacques Matte ◽  
...  

Abstract This study aimed to evaluate the effects of a combination of feed additives with complementary functional properties on the intestinal microbiota, homocysteine, and vitamins E and B status as well as systemic immune response of weanling piglets. At weaning, 32 litters were assigned to one of the following dietary treatments (DT): 1) conventional diet (CTRL); 2) CTRL diet supplemented with antibiotics (ATB); 3) a cocktail of feed additives containing cranberry extract, encapsulated carvacrol, yeast-derived products, and extra vitamins A, D, E, and B complex (CKTL); or 4) CKTL diet with bovine colostrum in replacement of plasma proteins (CKTL + COL). Within each litter, the piglets with lowest and highest birth weights (LBW and HBW, respectively) and two piglets of medium birth weight (MBW) were identified. The MBW piglets were euthanized at 42 d of age in order to characterize the ileal and colonic microbiota. Blood samples were also collected at weaning and at 42 d of age from LBW and HBW piglets to measure insulin-like growth factor-1 (IGF-1), cysteine, homocysteine, and vitamins E, B6, and B12, and to characterize the leukocyte populations. At 42 d of age, cytokine production by stimulated peripheral blood mononuclear cells was also measured. In a second experiment, piglets were reared under commercial conditions to evaluate the effects of the DT on the growth performance. At the indicator species analysis, the highest indicator value (IV) for Succinivibrio dextrinosolvens was found in the CKTL group, whereas the highest IV for Lactobacillus reuteri and Faecalibacterium prausnitzii was evidenced in the CKTL + COL group (P < 0.05). Compared with the other DT, CTRL piglets had higher concentrations of homocysteine, whereas the CKTL and CKTL + COL supplementations increased the concentrations of vitamins E and B12 (P < 0.05). DT had no effect on IGF-1 concentration and on blood leukocytes populations; however, compared with HBW piglets, LBW animals had lower values of IGF-1, whereas the percentages of γδ T lymphocytes and T helper were decreased and increased, respectively (P < 0.05). CKTL + COL also improved the growth performance of piglets reared under commercial conditions (P < 0.05). This study highlights the impact of birth weight on piglet systemic immune defenses and the potential of weaning diet supplemented with feed additives and bovine colostrum to modulate the homocysteine metabolism and the intestinal microbiota.


Sign in / Sign up

Export Citation Format

Share Document