Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs

2018 ◽  
Vol 99 (3) ◽  
pp. 1366-1374 ◽  
Author(s):  
Xun Pei ◽  
Zhiping Xiao ◽  
Lujie Liu ◽  
Geng Wang ◽  
Wenjing Tao ◽  
...  
2014 ◽  
Vol 160 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Cui-Yan Zhao ◽  
Shu-Xian Tan ◽  
Xi-Yu Xiao ◽  
Xian-Shuai Qiu ◽  
Jia-Qiang Pan ◽  
...  

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 220-222
Author(s):  
Seung Min Oh ◽  
SeYoung Yoon ◽  
KwangYeol Kim ◽  
Jung Woo Choi ◽  
Abdolreza Hosseindoust ◽  
...  

Abstract The aim of this trial was to determine the optimal supplementation mealworm on growth performance, apparent total tract retention of nutrients, hematological traits, immune response, and intestinal morphology in weaned pigs. A total of 180 weaned pigs (Landrace×Yorkshire×Duroc; 6.27 ± 0.15 kg) were randomly allotted to 3 treatments and 6 replicates on the basis of initial body weight and sex. The dietary treatments included a corn-based diet supplemented with 0, 2.5, or 5 % mealworm in 2 phases (0–14 and 15–28 d). The gain to feed ratio (G:F) was higher in pigs fed 2.5% mealworm compared with 2.5% during the first phase. Overall ADG was improved in pigs fed 2.5% mealworm compared with pigs fed 5% mealworm. No improvement in overall ADFI and G:F were observed. No digestibility responses were observed by adding mealworm to the diet, but the digestibility of DM and GE were tended to be higher in pigs fed 2.5% mealworm compared with control in phase 1. The number of monocytes tended to be increased in pigs fed 5% mealworm. The concentration of plasma IgG was higher in pigs fed mealworm, however, the plasma IL-6 was tended to be decreased when mealworm was added to the diet (P = 0.052). There was no change in intestinal morphology with increasing dietary levels of mealworm. The results showed that the dietary supplementation of 2.5% mealworm had beneficial effects on growth performance and immune system, however, no effects were detected on growth performance when 5% mealworm was added to the diet.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mei-nian Xu ◽  
Li Li ◽  
Wen Pan ◽  
Huan-xin Zheng ◽  
Meng-lei Wang ◽  
...  

Purpose: Zinc oxide nanoparticles (ZnO-NPs) have exerted antimicrobial properties. However, there is insufficient evaluation regarding the in vivo antifungal activity of ZnO-NPs. This study aimed to investigate the efficacy and mechanism of ZnO-NPs in controlling Candida albicans in the invertebrate Galleria mellonella.Methods:Galleria mellonella larvae were injected with different doses of ZnO-NPs to determine their in vivo toxicity. Non-toxic doses of ZnO-NPs were chosen for prophylactic injection in G. mellonella followed by C. albicans infection. Then the direct in vitro antifungal effect of ZnO-NPs against C. albicans was evaluated. In addition, the mode of action of ZnO-NPs was assessed in larvae through different assays: quantification of hemocyte density, morphology observation of hemocytes, characterization of hemocyte aggregation and phagocytosis, and measurement of hemolymph phenoloxidase (PO) activity.Results: Zinc oxide nanoparticles were non-toxic to the larvae at relatively low concentrations (≤20 mg/kg). ZnO-NP pretreatment significantly prolonged the survival of C. albicans-infected larvae and decreased the fungal dissemination and burden in the C. albicans-infected larvae. This observation was more related to the activation of host defense rather than their fungicidal capacities. Specifically, ZnO-NP treatment increased hemocyte density, promoted hemocyte aggregation, enhanced hemocyte phagocytosis, and activated PO activity in larvae.Conclusion: Prophylactic treatment with lower concentrations of ZnO-NPs protects G. mellonella from C. albicans infection. The innate immune response primed by ZnO-NPs may be part of the reason for the protective effects. This study provides new evidence of the capacity of ZnO-NPs in enhancing host immunity and predicts that ZnO-NPs will be attractive for further anti-infection applications.


Sign in / Sign up

Export Citation Format

Share Document