scholarly journals Effect of Heat Stress and Stocking Density on Growth Performance, Breast Meat Quality, and Intestinal Barrier Function in Broiler Chickens

Animals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 107 ◽  
Author(s):  
Doyun Goo ◽  
Jong Hyuk Kim ◽  
Geun Hyeon Park ◽  
Jomari Badillo Delos Reyes ◽  
Dong Yong Kil

The present experiment was conducted to investigate the effect of heat stress (HS) andstocking density (SD) on growth performance, breast meat quality, and intestinal barrier functionin broiler chickens. Experimental treatments included two different ambient temperatures (20 °C:thermoneutral conditions, or 27.8 °C: HS conditions) and two different SD (low: 9 birds/m2 andhigh: 18 birds/m2) in a 2 × 2 factorial arrangement. A total of 1140 21-day-old broiler chickens wereallotted 1 of 4 treatments with five replicates. At the end of the experiment (35 days of age), twobirds per replicate were euthanized for sample collections. The results indicated no interactionsbetween HS and SD for all measurements. For main effects, HS decreased (p < 0.05) the growthperformance of broiler chickens. Similarly, high SD also decreased (p < 0.05) body weight gain andfeed intake. HS decreased (p < 0.01) jejunal trans-epithelial electric resistance (TER), whereas highSD did not affect TER. Neither HS nor high SD affected jejunal tight junction-related geneexpressions; however, high SD reduced (p < 0.05) occludin expression. In conclusion, HS and highSD are key environmental factors decreasing broiler performance; however, the interactive effectsof HS and high SD are not significant under the current conditions.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1505
Author(s):  
Sang Hun Ha ◽  
Hwan Ku Kang ◽  
Abdolreza Hosseindoust ◽  
Jun Young Mun ◽  
Joseph Moturi ◽  
...  

Stocking density stress is one of the most common management stressors in the poultry industry. The present study was designed to investigate the effect of dietary Sophora koreensis (SK; 0 and 20 mg/kg diet) and stocking density (SD; 14 and 16 chickens/m2) on the antioxidant status, meat quality, and growth performance of native Korean chickens. There was a lower concentration of malondialdehyde (MDA) and a higher concentration of catalase, superoxide dismutase (SOD), and total antioxidant capacity in the serum and leg muscle with the supplementation of SK. The concentration of MDA was increased and concentrations of SOD were decreased in the leg muscle of chickens in low SD treatments. The SK-supplemented treatments showed an increased 3-ethylbenzothiazoline-6-sulfonate-reducing activity of leg muscles. The higher water holding capacity of breast muscle and a lower cooking loss and pH were shown in the SK-supplemented treatments. The addition of dietary SK resulted in a greater body weight gain and greater spleen and bursa Fabricius weight, as well as lower feed intake and abdominal fat. The low SD and supplementation of SK increased the concentrations of cholesterol. The concentration of glucose was increased in the low SD treatment. Corticosterone level was decreased in the SK-supplemented and low SD treatments. In conclusion, SK supplementation reduced the oxidative stress and increased meat quality and antioxidant status of chickens apart from the SD stress.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Aydin Altop ◽  
Isa Coskun ◽  
Ayse Gul Filik ◽  
Huseyin Cayan ◽  
Ahmet Sahin ◽  
...  

ABSTRACT: Effects of dietary Agaricus bisporus mixture or stalk or cap on growth performance, carcass components and some meat quality parameters, mesophilic aerobic bacterial counts, and intestinal histomorphology in broiler chickens were investigated. Two hundred and forty one-day-old male Ross 308 broiler chickens were divided into 4 experimental groups with 4 replicates, each including 15 birds. Chickens were fed with basal diet (C), mushroom mixture (MM, 10 g stalk+10 g cap/kg diet), mushroom stalk (MS, 20 g/kg diet) and mushroom cap (MC, 20 g/kg diet). Feed conversion ratio (FCR) was improved (P < 0.01) by dietary MS while feed intake (FI) decreased (P < 0.01) in all treatment groups compared to control. However, body weight gain (BWG) was decreased (P < 0.01) by MC inclusion. Mushroom supplemented groups had higher (P < 0.05) mesophilic aerobic bacteria in the cecum. MS inclusion increased villus height to crypt depth ratio in the jejunum (P < 0.01) and villus height in the ileum (P < 0.01) and jejunum (P < 0.05). MC increased (P < 0.01) crypt depth in the jejunum. There were no statistical differences among groups for carcass components (P > 0.05). The L* values were decreased (P < 0.01) in thigh meat but increased (P < 0.01) in breast meat by mushroom inclusion. The a* values were decreased (P < 0.01) and b* values were increased (P < 0.05) in both thigh and breast meat with mushroom addition to diet. The obtained results indicated that A. bisporus stalk meal at an inclusion level of 20 g/kg of diet had favourable effects on growth performance with higher feed efficiency, improved intestinal morphology with higher villus height and increased meat quality of broiler chickens.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Majid Shakeri ◽  
Jeremy James Cottrell ◽  
Stuart Wilkinson ◽  
Weicheng Zhao ◽  
Hieu Huu Le ◽  
...  

In a 2 × 2 factorial design, 60 male Ross-308 broilers were fed either a control or 1 g/kg betaine diet and housed under thermoneutral (TN) or heat stress (HS) conditions. Broilers were acclimated to diets for 1 week under TN (25 °C), then either kept at TN or HS, where the temperature increased 8 h/day at 33 °C and 16 h/day at 25 °C for up to 10 days. Respiration rate (RR) was measured at four time points, and on each of 1, 2, 3, 7 and 10 days of HS, 12 broilers were injected with 0.5 mg/kg of Evans Blue Dye (EBD) solution to quantify regional changes in tissue damage. Betaine was quantified in tissues, and ileal damage was assessed via morphometry and transepithelial resistance (TER). Heat stress elevated RR (p < 0.001) and resulted in reduced villous height (p = 0.009) and TER (p < 0.001), while dietary betaine lowered RR during HS (p < 0.001), increased betaine distribution into tissues, and improved ileal villous height (p < 0.001) and TER (p = 0.006). Heat stress increased EBD in the muscle and kidney of chickens fed the control diet but not in those receiving betaine. Overall, these data indicate that supplemented betaine is distributed to vital organs and the gastrointestinal tract, where it is associated with improved tolerance of HS. Furthermore, EBD markers help reveal the effects of HS on organs dysfunction.


2020 ◽  
Vol 33 (5) ◽  
pp. 778-787 ◽  
Author(s):  
Elmutaz Atta Awad ◽  
Muhamad Najaa ◽  
Zainool Abidin Zulaikha ◽  
Idrus Zulkifli ◽  
Abdoreza Farjam Soleimani

Objective: This study was conducted to investigate the effects of normal and heat stress environments on growth performance and, selected physiological and immunological parameters, caecal microflora and meat quality in Cobb 500 and Ross 308 broilers.Methods: One-hundred-and-twenty male broiler chicks from each strain (one-day-old) were randomly assigned in groups of 10 to 24 battery cages. Ambient temperature on day (d) 1 was set at 32°C and gradually reduced to 23°C on d 21. From d 22 to 35, equal numbers of birds from each strain were exposed to a temperature of either 23°C throughout (normal) or 34°C for 6 h (heat stress).Results: From d 1 to 21, strain had no effect (p>0.05) on feed intake (FI), body weight gain (BWG), or the feed conversion ratio (FCR). Except for creatine kinase, no strain×temperature interactions were observed for all the parameters measured. Regardless of strain, heat exposure significantly (p<0.05) reduced FI and BWG (d 22 to 35 and 1 to 35), immunoglobulin Y (IgY) and IgM, while increased FCR (d 22 to 35 and 1 to 35) and serum levels of glucose and acute phase proteins (APPs). Regardless of temperature, the Ross 308 birds had significantly (p<0.05) lower IgA and higher finisher and overall BWG compared to Cobb 500.Conclusion: The present study suggests that the detrimental effects of heat stress are consistent across commercial broiler strains because there were no significant strain×temperature interactions for growth performance, serum APPs and immunoglobulin responses, meat quality, and ceacal microflora population.


2021 ◽  
Vol 48 (1) ◽  
pp. 13-22
Author(s):  
Hee-Jin Kim ◽  
Jin-Joo Jeon ◽  
Hyun-soo Kim ◽  
Jiseon Son ◽  
Kwang-Yeol Kim ◽  
...  

2020 ◽  
Vol 33 (7) ◽  
pp. 1156-1166
Author(s):  
Junna He ◽  
Lianxiang Ma ◽  
Jialing Qiu ◽  
Xintao Lu ◽  
Chuanchuan Hou ◽  
...  

Objective: The aim of this study was to evaluate the effects of compound organic acid calcium (COAC) on growth performance, hepatic antioxidant status and intestinal barrier of male broilers under high ambient temperature (32.7°C).Methods: Nine hundred healthy one-d-old Cobb-500 male broiler chicks were randomly assigned into three groups with six replicates of 50 birds each. A basal diet supplemented with 0% (control), 0.4% and 0.8% COAC, respectively were fed to birds for 6 weeks. All treatments were under high ambient indoor temperature of 32.7°C, and had a constant calcium and available phosphorus ratio.Results: The results showed that, compared with control, the average daily gain of broilers in 0.4% and 0.8% was significantly increased and the ratio of feed to gain in in 0.4% and 0.8% was significantly decreased at 1 to 21, 22 to 42 and 1 to 42 days of age (p<0.05). Compared with control, 0.8% COAC slightly decreased (p = 0.093) the content of malondialdehyde in liver at 42 days of age while 0.4% COAC significantly decreased (p<0.05) the activity of alkaline phosphatase. Furthermore, 0.4% COAC significantly enhanced the intestinal barrier function via increasing jejunal and ileal ocln transcription, promoting jejunal mucin 2 transcription at 42 days of age (p<0.05), and decreasing jejunal toll-like receptor 2 (TLR-2) and ileal TLR-15, inducible nitric oxide synthase compared with control group (p<0.05). Whereas, no significant differences on the transcription of interleukin-1β in jejunum and ileum were observed among three treatments (p>0.05). Overall, heat stress caused by high natural environment temperature may induce the damage to hepatic antioxidation and intestinal barrier.Conclusion: Dietary inclusion of COAC can improve the tolerance of broilers to thermal environment through the modification of antioxidative parameters in liver and the mRNA expression of genes in intestinal barrier, resulting in an optimal inclusion level of 0.4%.


Sign in / Sign up

Export Citation Format

Share Document